Skip to main content
Log in

Change in renal function following laparoscopic donor nephrectomy using 99 mTc-diethylenetriaminepentaacetic acid scan

  • Original Article
  • Published:
World Journal of Urology Aims and scope Submit manuscript

Abstract

Purpose

We assessed the change in remaining kidney function after laparoscopic donor nephrectomy using serial technetium 99m diethylenetriaminepentaacetic acid (DTPA) scans and investigated the factors affecting the course.

Methods

Data from 155 donors were obtained from a prospectively maintained database. All donors underwent consecutive DTPA scans preoperatively and 1 month, 6 months and 1 year postoperatively. We investigated the longitudinal change in renal function after surgery and analyzed parameters to influence the perioperative glomerular filtration rate (GFR) change.

Results

The changes in GFR according to the DTPA scan presented significant improvement from 1 month up to 2 years after donation (all p < 0.001). The DTPA-GFR of the remaining kidney increased by 14.8 % to 58.2 ± 10.6 ml/min/1.73 m2 (p < 0.001) and by 33.9 % to 78.0 ± 14.0 ml/min/1.73 m2 at 1 month and 1 year after surgery, respectively (p < 0.001). Only 21.9 % of donors categorized into chronic kidney disease (CKD) stage 3 or more at 1 year after donation were <60 ml/min/1.73 m2 according to DTPA-GFR. Multivariate regression analysis revealed that the increase in DTPA-GFR at 1 year was negatively associated with patient age (p = 0.005), BMI (p = 0.04) and preoperative DTPA-GFR of remaining kidney (p = 0.009).

Conclusions

The DTPA-GFR of remaining kidney increased steadily for up to 2 years after surgery. Younger donors with lower body mass index and those with lower initial function of the remaining kidney demonstrated a greater increase in DTPA-GFR after nephrectomy. Many of the donors with CKD stage 3 after donation have good renal function according to the results of DTPA-GFR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Greco F, Hoda MR, Alcaraz A, Bachmann A, Hakenberg OW, Fornara P (2010) Laparoscopic living-donor nephrectomy: analysis of the existing literature. Eur Urol 58:498–509

    Article  PubMed  Google Scholar 

  2. Hadjianastassiou VG, Johnson RJ, Rudge CJ, Mamode N (2007) 2509 living donor nephrectomies, morbidity and mortality, including the UK introduction of laparoscopic donor surgery. Am J Transplant 7:2532–2537

    Article  CAS  PubMed  Google Scholar 

  3. Johnson EM, Remucal MJ, Gillingham KJ, Dahms RA, Najarian JS, Matas AJ (1997) Complications and risks of living donor nephrectomy. Transplantation 64:1124–1128

    Article  CAS  PubMed  Google Scholar 

  4. Najarian JS, Chavers BM, McHugh LE, Matas AJ (1992) 20 years or more of follow-up of living kidney donors. Lancet 340:807–810

    Article  CAS  PubMed  Google Scholar 

  5. Ibrahim HN, Foley R, Tan L, Rogers T, Bailey RF, Guo H, Gross CR, Matas AJ (2009) Long-term consequences of kidney donation. N Engl J Med 360:459–469

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Ellison MD, McBride MA, Taranto SE, Delmonico FL, Kauffman HM (2002) Living kidney donors in need of kidney transplants: a report from the organ procurement and transplantation network. Transplantation 74:1349–1351

    Article  PubMed  Google Scholar 

  7. Sommerer C, Morath C, Andrassy J, Zeier M (2004) The long-term consequences of living-related or unrelated kidney donation. Nephrol Dial Transplant 19(Suppl. 4):iv45–iv47

    PubMed  Google Scholar 

  8. Garg AX, Muirhead N, Knoll G, Yang RC, Prasad GV, Thiessen-Philbrook H, Rosas-Arellano MP, Housawi A, Boudville N, Donor Nephrectomy Outcomes Research (DONOR) Network (2006) Proteinuria and reduced kidney function in living kidney donors: a systematic review, meta-analysis, and meta-regression. Kidney Int 70:1801–1810

    Article  CAS  PubMed  Google Scholar 

  9. Cuevas-Ramos D, Almeda-Valdés P, Arvizu M, Mata J, Morales-Buenrostro LE, Gabilondo B, Vilatobá M, Correa-Rotter R, Gabilondo-Navarro F, Mehta R, Aguilar-Salinas CA, Alberú J, Gómez-Pérez FJ (2011) Association of the metabolicsyndrome and long-term renal function in kidney donors. Transplant Proc 43:1601–1606

    Article  CAS  PubMed  Google Scholar 

  10. Barlow AD, Taylor AH, Elwell R, Buttress AS, Moorhouse J, Nicholson ML (2010) The performance of three estimates of glomerular filtration rate before and after live donornephrectomy. Transpl Int 23:417–423

    Article  PubMed  Google Scholar 

  11. Issa N, Meyer KH, Arrigain S, Choure G, Fatica RA, Nurko S, Stephany BR, Poggio ED (2008) Evaluation of creatinine-based estimates of glomerular filtration rate in a large cohort of living kidney donors. Transplantation 86:223–230

    Article  CAS  PubMed  Google Scholar 

  12. Rule AD, Gussak HM, Pond GR, Bergstralh EJ, Stegall MD, Cosio FG, Larson TS (2004) Measured and estimated GFR in healthy potential kidney donors. Am J Kidney Dis 43:112–119

    Article  PubMed  Google Scholar 

  13. Cho HJ, Lee JY, Kim JC, Kim SW, Hwang TK, Hong SH (2012) How safe and effective is routine left hand-assisted laparoscopic donor nephrectomy with multiple renal arteries? A high-volume, single-center experience. Transplant Proc 44:2913–2917

    Article  CAS  PubMed  Google Scholar 

  14. Cho HJ, Choi YS, Bae WJ, Bae JH, Hong SH, Lee JY, Kim SW, Hwang TK, Cho YH (2013) Another option for laparoscopic living donor nephrectomy: a single center experience comparing two-port versus hand-assisted technique. J Endourol 27:587–591

    Article  PubMed  Google Scholar 

  15. Russell CD, Bischoff PG, Rowell KL, Kontzen F, Lloyd LK, Tauxe WN, Dubovsky EV (1983) Quality control of Tc99 m DTPA for measurement of glomerular filtration: concise communication. J Nucl Med 24:722–727

    CAS  PubMed  Google Scholar 

  16. Yildiz B, Kural N, Colak O, Ak I, Akcar N (2008) IGF-1, IGFBP-3, VEGF and MMP-9 levels and their potential relationship with renal functions in patients with compensatory renal growth. Clin Physiol Funct Imaging 28:107–112

    Article  CAS  PubMed  Google Scholar 

  17. Ziada G, Youseif H, Khalil M (2009) Compensatory changes in the function of the remaining kidney immediately after unilateral nephrectomy in sheep. Tohoku J Exp Med 219:165–168

    Article  PubMed  Google Scholar 

  18. Chen Z, Fang J, Li G, Zhang L, Xu L, Pan G, Ma J, Qi H (2012) Compensatory changes in the retained kidney after nephrectomy in a living related donor. Transplant Proc 44:2901–2905

    Article  CAS  PubMed  Google Scholar 

  19. Song T, Fu L, Huang Z, He S, Zhao R, Lin T, Wei Q (2014) Change in renal parenchymal volume in living kidney transplant donors. Int Urol Nephrol 46:743–747

    Article  PubMed  Google Scholar 

  20. Choi KH, Yang SC, Joo DJ, Kim MS, Kim YS, Kim SI, Han WK (2012) Clinical assessment of renal function stabilization after living donor nephrectomy. Transplant Proc 44:2906–2909

    Article  CAS  PubMed  Google Scholar 

Download references

Conflict of interest

The authors have no conflicts of interest to declare.

Ethical standard

The study was approved by the Institutional Review Board of Seoul St. Mary’s Hospital; informed consent was obtained from all patients.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyuk Jin Cho.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cho, H.J., Choi, S.W., Bae, W.J. et al. Change in renal function following laparoscopic donor nephrectomy using 99 mTc-diethylenetriaminepentaacetic acid scan. World J Urol 33, 719–723 (2015). https://doi.org/10.1007/s00345-014-1408-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00345-014-1408-0

Keywords

Navigation