Skip to main content

Advertisement

Log in

Establishment of a protocol for large-scale gene expression analyses of laser capture microdissected bladder tissue

  • Original Article
  • Published:
World Journal of Urology Aims and scope Submit manuscript

Abstract

Purpose

Lower urinary tract symptoms (LUTS) can be caused by structural and functional changes in different compartments of the bladder. To enable extensive investigations of individual regions even in small bladder biopsies, we established a combination protocol consisting of three molecular techniques: laser capture microdissection microscopy (LCM), RNA preamplification and quantitative polymerase chain reaction (qPCR).

Methods

Urinary bladders of ten mice were resected and frozen immediately or after a delay of 15 min. Cryosections were obtained and smooth muscle was isolated using the LCM technique. Then, RNA was extracted, including protocols with and without DNase digestion as well as with and without the addition of carrier RNA. Extracted RNA was either used for reverse transcriptase (RT)-PCR plus qPCR or for a combination of RNA preamplification and qPCR.

Results

Our data showed that with RNA preamplification, 10 μg cDNA can be regularly generated from 2.5 ng RNA. Depending on expression levels, this is sufficient for hundreds of pPCR reactions. The efficiency of preamplification, however, was gene-dependent. DNase digestion before preamplification lead to lower threshold cycles in qPCR. The use of partly degraded RNA for RNA preamplification did not change the results of the following qPCR.

Conclusions

RNA preamplification strongly enlarges the spectrum of genes to be analyzed in distinct bladder compartments by qPCR. It is an easy and reliable method that can be realized with standard laboratory equipment. Our protocol may lead in near future to a better understanding of the pathomechanisms in LUTS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Deepak S, Kottapalli K, Rakwal R, Oros G, Rangappa K, Iwahashi H, Masuo Y, Agrawal G (2007) Real-time PCR: revolutionizing detection and expression analysis of genes. Curr Genomics 8(4):234–251

    Article  PubMed  CAS  Google Scholar 

  2. VanGuilder HD, Vrana KE, Freeman WM (2008) Twenty-five years of quantitative PCR for gene expression analysis. Biotechniques 44(5):619–626

    Article  PubMed  CAS  Google Scholar 

  3. Buh Gasparic M, Tengs T, La Paz JL, Holst-Jensen A, Pla M, Esteve T, Zel J, Gruden K (2010) Comparison of nine different real-time PCR chemistries for qualitative and quantitative applications in GMO detection. Anal Bioanal Chem 396(6):2023–2029

    Article  PubMed  CAS  Google Scholar 

  4. Edwards RA (2007) Laser capture microdissection of mammalian tissue. J Vis Exp 8:308

    Google Scholar 

  5. Espina V, Heiby M, Pierobon M, Liotta LA (2007) Laser capture microdissection technology. Expert Rev Mol Diagn 7(5):647–657

    Article  PubMed  CAS  Google Scholar 

  6. Maake C, Landman M, Wang X, Schmid DM, Ziegler U, John H (2006) Expression of smoothelin in the normal and the overactive human bladder. J Urol 175(3 Pt 1):1152–1157

    Article  PubMed  CAS  Google Scholar 

  7. John H, Walch M, Lehmann T, Maake C (2009) Connexin45 expression in the human obstructed detrusor muscle. World J Urol 27(3):411–418

    Article  PubMed  CAS  Google Scholar 

  8. Venter JC, Adams MD, Myers EW, Li PW, Mural RJ, Sutton GG, Smith HO, Yandell M, Evans CA, Holt RA et al (2001) The sequence of the human genome. Science 291(5507):1304–1351

    Article  PubMed  CAS  Google Scholar 

  9. Van Gelder RN, von Zastrow ME, Yool A, Dement WC, Barchas JD, Eberwine JH (1990) Amplified RNA synthesized from limited quantities of heterogeneous cDNA. Proc Natl Acad Sci USA 87(5):1663–1667

    Article  PubMed  Google Scholar 

  10. Eberwine J, Yeh H, Miyashiro K, Cao Y, Nair S, Finnell R, Zettel M, Coleman P (1992) Analysis of gene expression in single live neurons. Proc Natl Acad Sci USA 89(7):3010–3014

    Article  PubMed  CAS  Google Scholar 

  11. Iscove NN, Barbara M, Gu M, Gibson M, Modi C, Winegarden N (2002) Representation is faithfully preserved in global cDNA amplified exponentially from sub-picogram quantities of mRNA. Nat Biotechnol 20(9):940–943

    Article  PubMed  CAS  Google Scholar 

  12. Seth D, Gorrell MD, McGuinness PH, Leo MA, Lieber CS, McCaughan GW, Haber PS (2003) SMART amplification maintains representation of relative gene expression: quantitative validation by real time PCR and application to studies of alcoholic liver disease in primates. J Biochem Biophys Methods 55(1):53–66

    Article  PubMed  CAS  Google Scholar 

  13. Dafforn A, Chen P, Deng G, Herrler M, Iglehart D, Koritala S, Lato S, Pillarisetty S, Purohit R, Wang M et al (2004) Linear mRNA amplification from as little as 5 ng total RNA for global gene expression analysis. Biotechniques 37(5):854–857

    PubMed  CAS  Google Scholar 

  14. Wilhelm J, Muyal JP, Best J, Kwapiszewska G, Stein MM, Seeger W, Bohle RM, Fink L (2006) Systematic comparison of the T7-IVT and SMART-based RNA preamplification techniques for DNA microarray experiments. Clin Chem 52(6):1161–1167

    Article  PubMed  CAS  Google Scholar 

  15. Muyal JP, Singh SK, Fehrenbach H (2008) DNA-microarray technology: comparison of methodological factors of recent technique towards gene expression profiling. Crit Rev Biotechnol 28(4):239–251

    Article  PubMed  CAS  Google Scholar 

  16. Croner RS, Lausen B, Schellerer V, Zeittraeger I, Wein A, Schildberg C, Papadopoulos T, Dimmler A, Hahn EG, Hohenberger W et al (2009) Comparability of microarray data between amplified and non amplified RNA in colorectal carcinoma. J Biomed Biotechnol 2009:837170

    Article  PubMed  Google Scholar 

  17. Andersson KE (2007) LUTS treatment: future treatment options. Neurourol Urodyn 26(6 Suppl):934–947

    Article  PubMed  CAS  Google Scholar 

  18. Singh S, Robinson M, Ismail I, Saha M, Auer H, Kornacker K, Robinson ML, Bates CM, McHugh KM (2008) Transcriptional profiling of the megabladder mouse: a unique model of bladder dysmorphogenesis. Dev Dyn 237(1):170–186

    Article  PubMed  CAS  Google Scholar 

  19. Yassin AA, El-Sakka AI, Saad F, Gooren LJ (2008) Lower urinary-tract symptoms and testosterone in elderly men. World J Urol 26(4):359–364

    Article  PubMed  CAS  Google Scholar 

  20. Singh R, Maganti RJ, Jabba SV, Wang M, Deng G, Heath JD, Kurn N, Wangemann P (2005) Microarray-based comparison of three amplification methods for nanogram amounts of total RNA. Am J Physiol Cell Physiol 288(5):C1179–C1189

    Article  PubMed  CAS  Google Scholar 

  21. Kurn N, Chen P, Heath JD, Kopf-Sill A, Stephens KM, Wang S (2005) Novel isothermal, linear nucleic acid amplification systems for highly multiplexed applications. Clin Chem 51(10):1973–1981

    Article  PubMed  CAS  Google Scholar 

  22. Vermeulen J, Derveaux S, Lefever S, De Smet E, De Preter K, Yigit N, De Paepe A, Pattyn F, Speleman F, Vandesompele J (2009) RNA pre-amplification enables large-scale RT-qPCR gene-expression studies on limiting sample amounts. BMC Res Notes 2:235

    Article  PubMed  Google Scholar 

  23. Scaruffi P, Stigliani S, Coco S, Valdora F, De Vecchi C, Bonassi S, Tonini GP (2010) Transcribed-ultra conserved region expression profiling from low-input total RNA. BMC Genomics 11:149

    Article  PubMed  Google Scholar 

  24. Fleige S, Pfaffl MW (2006) RNA integrity and the effect on the real-time qRT-PCR performance. Mol Aspects Med 27(2–3):126–139

    Article  PubMed  CAS  Google Scholar 

  25. Cardozo L, Chapple C, Wein A (2009) Urgency as the cardinal symptom of overactive bladder: a critical analysis. World J Urol 27(6):701–703

    Article  PubMed  Google Scholar 

  26. Abrams P, Chapple CR, Junemann KP, Sharpe S (2011) Urinary urgency: a review of its assessment as the key symptom of the overactive bladder syndrome. World J Urol [Epub ahead of print]

Download references

Acknowledgments

We thank Theresa Lehmann for excellent technical assistance. The study was supported by the FP7 framework program and the Swiss National Foundation.

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Horstmann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Horstmann, M., Foerster, B., Brader, N. et al. Establishment of a protocol for large-scale gene expression analyses of laser capture microdissected bladder tissue. World J Urol 30, 853–859 (2012). https://doi.org/10.1007/s00345-012-0881-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00345-012-0881-6

Keywords

Navigation