Skip to main content
Log in

Functional Analysis of Abscisic Acid-Stress Ripening Transcription Factor in Prunus persica f. atropurpurea

  • Published:
Journal of Plant Growth Regulation Aims and scope Submit manuscript

Abstract

Red-leaf peach (Prunus persica f. atropurpurea) is an important subtropical fruit crop, and an ideal species for leave color quality research because of the substantial changes that occur during development. It experiences lots of stresses during growth. To understand the mechanism of plant anti-stress, ASR [abscisic acid (ABA), stress, ripening-induced] genes, which are unique to plants, were induced under the application of ABA, stress, and ripening. In this study, we showed that in peach leaves stress could induce antioxidant enzyme activity and anthocyanin production, as well as biosynthesis gene expression, but decrease chlorophyll content. One ASR isoform identified from peach contained ABA stress- and ripening-induced proteins and a water-deficit stress-induced protein (ABA/WDS) domain, and had a high genetic relationship with other species of ASRs. ASR transcript levels were increased under abiotic and biotic stresses, and were also induced by sucrose and ABA. ASR bound the promoter of the hexose transporter, which contained four sugar boxes induced by sucrose that activated downstream gene expression. Overexpression of the PpASR gene conferred tolerance to stresses in tobacco. Transient expression of PpASR in tomato promoted fruit softening and ripening. Taken together, this study provides new evidence on the important role of ASR in cross-signaling between ABA and sucrose to regulate peach anti-stress. The findings of this study also provide new insights into the regulatory mechanism underlying fruit development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Amitai-Zeigerson H, Scolnik PA, Bar-Zvi D (1995) Tomato Asr1 mRNA and protein are transiently expressed following salt stress, osmotic stress and treatment with abscisic acid. Plant Sci 110:205–213

    Article  CAS  Google Scholar 

  • Ananga A, Georgiev V, Ochieng J, Phills B, Tsolova V (2013) Production of anthocyanins in grape cell cultures: a potential source of raw material for pharmaceutical, food, and cosmetic industries. INTECH, Rijeka, pp 247–287

    Google Scholar 

  • Archbold DD (1988) Abscisic acid facilitates sucrose import by strawberry fruit explants and cortex disks in vitro. HortScience 23:880–881

    CAS  Google Scholar 

  • Arenhart RA, Lima JC, Pedron M, Carvalho FE, Silveira JA, Rosa SB, Caverzan A, Andrade CM, Schu¨nemann M, Margis R, Margis-Pinheiro M (2013) Involvement of ASR genes in aluminium tolerance mechanisms in rice. Plant Cell Environ 36(1):52–67

    Article  CAS  PubMed  Google Scholar 

  • Aru´s P, Verde I, Sosinski B, Zhebentyayeva T, Abbott AG (2012) The peach genome. Tree Genet Genomes 8:531–547

    Article  Google Scholar 

  • Bartels D, Sunkar R (2005) Drought and salt tolerance in plants. Crit Rev Plant Sci 24(1):23–58

    Article  CAS  Google Scholar 

  • Battaglia M, Olvera-Carrillo Y, Garciarrubio A, Campos F, Covarrubias AA (2008) The enigmatic LEA proteins and other hydrophilins. Plant Physiol 148:6–24

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beruter J, Studer FME (1995) Comparison of sorbitol transport in excised tissue discs and cortex tissue of intact apple fruit. J Plant Physiol 146:95–102

    Article  CAS  Google Scholar 

  • Blair MW, Galeano CH, Tovar E, Muñoz MC, Castrillón AV, Beebe SE, Rao IM (2010) Development of a Mesoamerican intra-genepool genetic map for quantitative trait loci detection in a drought tolerant × susceptible common bean (Phaseolus vulgaris L.) cross. Mol Breed 29:71–88

    Article  PubMed  PubMed Central  Google Scholar 

  • Cakir B, Agasse A, Gaillard C, Saumonneau A, Delrot S, Atanassova R (2003) A grape ASR protein involved in sugar and abscisic acid signaling. Plant Cell 15:2165–2180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Canel C, Bailey-Serres JN, Roose ML (1995) Pummelo fruit transcript homologous to ripening-induced genes. Plant Physiol 108:1323–1324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carpentier SC, Witters E, Laukens K, Van Onckelen H, Swennen R, Panis B (2007) Banana (Musa spp.) as a model to study the meristem proteome: acclimation to osmotic stress. Proteomics 7:92–105

    Article  CAS  PubMed  Google Scholar 

  • Carrari F, Fernie AR, Iusem ND (2004) Heard it through the grapevine ABA and sugar cross-talk: the ASR story. Trends Plant Sci 9:57–59

    Article  CAS  PubMed  Google Scholar 

  • Chang S, Puryear JD, Dias MADL, Funkhauser EA, Newton RG, Cairney J (1996) Gene expression under water deficit in loblolly pine (Pinus taeda L.): isolation and characterization of cDNA clones. Physiol Plant 97:139–148

    Article  CAS  Google Scholar 

  • Chen JY, Liu DJ, Jiang YM, Zhao ML, Shan W, Kuang JF, Lu WJ (2011) Molecular characterization of a strawberry FaASR gene in relation to fruit ripening. PLoS ONE 6:e24649

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dai J-R, Liu B, Feng D-R et al (2011) MpAsr encodes an intrinsically unstructured protein and enhances osmotic tolerance in transgenic Arabidopsis. Plant Cell Rep 30:1219–1230

    Article  CAS  PubMed  Google Scholar 

  • Dische Z (1962) Measurement of cell wall neutral sugars. In: Whistler RL, Wolfrom ML (eds) Methods in carbohydrate chemistry. Academic Press, New York, pp 475–481

    Google Scholar 

  • Frankel N, Carrari F, Hasson E, Lusem ND (2006) Evolutionary history of the Asr gene family. Gene 378:74–83

    Article  CAS  PubMed  Google Scholar 

  • Frankel N, Nunes-Nesi A, Balbo I, Mazuch J, Centeno D, Iusem ND, Fernie AR, Carrari F (2007) ci21A/Asr1 expression influences glucose accumulation in potato tubers. Plant Mol Biol 63:719–730

    Article  CAS  PubMed  Google Scholar 

  • Gilad A, Amitai-Zeigerson H, Bar-Zvi D, Scolnik PA (1997) ASR1, a tomato water-stress regulated gene: genomic organization, developmental regulation and DNA-binding activity. Acta Hortic 447:447–454

    Article  CAS  Google Scholar 

  • Golan I, Dominguez PG, Konrad Z, Shkolnik-Inbar D, Carrari F, Bar-Zvi D (2014) Tomato abscisic acid stress ripening (ASR) gene family revisited. PLoS ONE 9:e107117

    Article  PubMed  PubMed Central  Google Scholar 

  • Henry IM, Carpentier SC, Pampurova S, Van Hoylandt A, Panis B, Swennen R, Remy S (2011) Structure and regulation of the Asr gene family in banana. Planta 234:785–798

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hsu YF, Yu SC, Yang CY, Wang CS (2011) Lily ASR protein conferred cold and freezing resistance in Arabidopsis. Plant Physiol Biochem 49:937–945

    Article  CAS  PubMed  Google Scholar 

  • Hu W, Huang C, Deng X, Zhou S, Chen L, Li Y, Wang C, Ma Z, Yuan Q, Wang Y, Cai R, Liang X, Yang G, He G (2013) TaASR1, a transcription factor gene in wheat, confers drought stress tolerance in transgenic tobacco. Plant Cell Environ 36:1449–1464

    Article  CAS  PubMed  Google Scholar 

  • Hu YX, Yang X, Li XL, Yu XD, Li QL (2014) The SlASR gene cloned from the extreme halophyte Suaeda liaotungensis K. enhances abiotic stress tolerance in transgenic Arabidopsis thaliana. Gene 549:243–251

    Article  CAS  PubMed  Google Scholar 

  • Huber DJ (1983) Polyuronide degradation and hemicellulose modification on ripening tomato fruit. J Am Soc Hortic Sci 108:405–409

    CAS  Google Scholar 

  • Ingram J, Bartels D (1996) The molecular basis of dehydration tolerance in plants. Annu Rev Plant Physiol Plant Mol Biol 47:377–403

    Article  CAS  PubMed  Google Scholar 

  • Iusem ND, Bartholomew DM, Hitz WD, Scolnik PA (1993) Tomato (Lycopersicon esculentum) transcript induced by water deficit and ripening. Plant Physiol 102:1353–1354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jefferson RA (1987) Assaying chimeric genes in plants: the GUS gene fusion system. Plant Mol Biol Rep 5:387–405

    Article  CAS  Google Scholar 

  • Jeong ST, Goto-Yamamoto N, Kobayashi S, Esaka M (2004) Effects of plant hormones and shading on the accumulation of anthocyanins and the expression of anthocyanin biosynthetic genes in grape berry skins. Plant Sci 167:247–252

    Article  CAS  Google Scholar 

  • Jia HF, Guo JX, Qin L, Shen YY (2010) Virus-induced PpCHLH gene silencing in peach leaves (Prunus persica). J Hortic Sci Biotechnol 85:528–532

    Article  CAS  Google Scholar 

  • Jia HF, Jiu ST, Zhang C, Wang C, Tariq P, Liu ZJ, Wang BJ, Cui LW, Fang JG (2016) Abscisic acid and sucrose regulate tomato and strawberry fruit ripening through the abscisic acid - stress - ripening transcription factor. Plant Biotechnol J 14(10):2045–2065

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang SC, Mei C, Liang S, Yu YT, Lu K, Wu Z, Wang XF, Zhang DP (2015) Crucial roles of the pentatricopeptide repeat protein SOAR1 in Arabidopsis response to drought, salt and cold stresses. Plant Mol Biol 88(4–5):369–385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Joo J, Lee YH, Choi DH et al (2013) Rice ASR1 has function in abiotic stress tolerance during early growth stages of rice. J Korean Soc Appl Biol Chem 56:349–352

    Article  CAS  Google Scholar 

  • Joo H, Lim CW, Lee SC (2016) Identification and functional expression of the pepper RING type E3 ligase, CaDTR1, involved in drought stress tolerance via ABA-mediated signalling. Sci Rep 6:30097

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kalifa Y, Perlson E, Gilad A, Konrad Z, Scolnik PA, Bar-Zvi D (2004) Over-expression of the water and salt stress-regulated Asr1 gene confers an increased salt tolerance. Plant Cell Environ 27:1459–1468

    Article  CAS  Google Scholar 

  • Kim SJ, Lee SC, Hong SK, An K, An G, Kim SR (2009) Ectopic expression of a cold responsive OsAsr1 cDNA gives enhanced cold tolerance in transgenic rice plants. Mol Cell 27:449–458

    Article  CAS  Google Scholar 

  • Kim IS, Kim YS, Yoon HS (2012) Rice ASR1 protein with reactive oxygen species scavenging and chaperone-like activities enhances acquired tolerance to abiotic stresses in Saccharomyces cerevisiae. Mol Cell 33:285–393

    Article  CAS  Google Scholar 

  • Konrad Z, Bar-Zvi D (2008) Synergism between the chaperone-like activity of the stress regulated ASR1 protein and the osmolyte glycinebetaine. Planta 227:1213–1219

    Article  CAS  PubMed  Google Scholar 

  • Kühn C (2016) Post-translational cross-talk between brassinosteroid and sucrose signaling. Plant Sci Int J Exp Plant Biol 248:75–81

    Google Scholar 

  • Li RH, Liu GB, Wang H, Zheng YZ (2013) Effects of Fe3+ and Zn2+ on the structural and thermodynamic properties of a soybean ASR protein. Biosci Biotechnol Biochem 77:475–481

    Article  CAS  PubMed  Google Scholar 

  • Liu HY, Dai JR, Feng DR, Liu B, Wang HB, Wang JF (2010) Characterization of a novel plantain Asr gene, MpAsr, that is regulated in response to infection of Fusarium oxysporum f. sp. cubense and abiotic stresses. J Integr Plant Biol 52:315–323

    Article  CAS  PubMed  Google Scholar 

  • Luca LC, Panagiotis M, Athanasios T, Angela RLP (2015) Tobacco plants over-expressing the sweet orange tau glutathione transferases (CsGSTUs) acquire tolerance to the diphenyl ether herbicide fluorodifen and to salt and drought stresses. Phytochemistry 116:69–77

    Article  Google Scholar 

  • Maskin L, Frankel N, Gudesblat G, Demergasso MJ, Pietrasanta LI, Iusem ND (2007) Dimerization and DNA-binding of ASR1, a small hydrophilic protein abundant in plant tissues suffering from water loss. Biochem Biophys Res Commun 352:831–835

    Article  CAS  PubMed  Google Scholar 

  • Matsuhashi S, Hatanaka C (1992) Difference between the free and conjugated galacturonate residues in their color reaction with carbazole or m-hydroxybiphenyl reagents. Biosci Biotechnol Biochem 56:1142–1143

    Article  CAS  PubMed  Google Scholar 

  • Mbeguie AMD, Gomez RM, Fils-Lycaon B (1997) Molecular cloning and nucleotide sequence of an abscisic acid-, stress-, ripening-induced (ASR)-like protein from apricot fruit (accession no. U82760). Gene expression during fruit ripening. (PGR97-166). Plant Physiol 115:1288

    Google Scholar 

  • Orzaez D, Mirabel S, Wieland WH, Granell A (2006) Agroinjection of tomato fruits. a tool for rapid functional analysis of transgenes directly in fruit. Plant Physiol 140(1):3–11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Padmanabhan V, Dias DMAL, Newton RJ (1997) Expression analysis of a gene family in loblolly pine (Pinus taeda L.) induced by water deficit stress. Plant Mol Biol 35:801–807

    Article  CAS  PubMed  Google Scholar 

  • Philippe R, Courtois B, McNally KL, Mournet P, El-Malki R, Le Paslier MC, Fabre D, Billot C, Brunel D, Glaszmann JC, This D (2010) Structure, allelic diversity and selection of Asr genes, candidate for drought tolerance, in Oryza sativa L. and wild relatives. Theor Appl Genet 121:769–787

    Article  CAS  PubMed  Google Scholar 

  • Rajjou L, Belghazi M, Huguet R, Robin C, Moreau A, Job C, Job D (2006) Proteomic investigation of the effect of salicylic acid on Arabidopsis seed germination and establishment of early defense mechanisms. Plant Physiol 141(3):910–923

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ravaglia D, Espley RV, Henry-Kirk RA, Andreotti C, Ziosi V, Hellens RP, Costa G, Allan AC (2013) Transcriptional regulation of flavonoid biosynthesis in nectarine (Prunus persica) by a set of R2R3 MYB transcription factors. BMC Plant Biol 13(5):53

    Google Scholar 

  • Ricardi MM, Gonza´lez RM, Zhong S, Domínguez PG, Duffy T, Turjanski PG, Salter JDS, Alleva K, Carrari F, Giovannoni JJ, Estévez JM, Iusem ND (2014) Genome-wide data (ChIP-seq) enabled identification of cell wall-related and aquaporin genes as targets of tomato ASR1, a drought stress responsive transcription factor. BMC Plant Biol 14(1):1–14

    Article  Google Scholar 

  • Riccardi F, Gazeau P, de Vienne D, Zivy M (1998) Protein changes in response to progressive water deficit in maize. Quantitative variation and polypeptide identification. Plant Physiol 117:1253–1263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rossi M, Carrari Y, Cabrera JL, Váquez C, Herrera L, Gudesblat G, Iusem ND (1998) Analysis of an abscisic acid (ABA)-responsive gene promoter belonging to the Asr gene family from tomato in homologous and heterologous systems. Mol Gen Genet 258:1–8

    Article  CAS  PubMed  Google Scholar 

  • Saumonneau A, Agasse A, Bidoyen MT, Lallemand M, Cantereau A, Medici A, Laloi M, Atanassova R (2008) Interaction of grape ASR proteins with a DREB transcription factor in the nucleus. FEBS Lett 582:3281–3287

    Article  CAS  PubMed  Google Scholar 

  • Saumonneau A, Laloi M, Lallemand M, Rabot A, Atanassova R (2011) Dissection of the transcriptional regulation of grape ASR and response to glucose and abscisic acid. J Exp Bot 63(3):1495–1510

    Article  PubMed  Google Scholar 

  • Schneider A, Salamini F, Gebhardt C (1997) Expression patterns and promoter activity of the cold-regulated gene ci21A of potato. Plant Physiol 113:335–345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seki M, Narusaka M, Ishida J, Nanjo T, Fujita M, Oono Y, Kamiya A, Nakajima M, Enju A, Sakurai T, Satou M, Akiyama K, Taji T, Yamaguchi-Shinozaki K, Carninci P, Kawai J, Hayashizaki Y, Shinozaki K (2003) Monitoring the expression profiles of 7000 Arabidopsis genes under drought, cold and high-salinity stresses using a full-length cDNA microarray. Plant J 31:279–292

    Article  Google Scholar 

  • Shan DP, Huang JG, Yang YT, Guo YH, Wu CA, Yang GD, Gao Z, Zheng CC (2007) Cotton GhDREB1 increases plant tolerance to low temperature and is negatively regulated by gibberellic acid. New Phytol 176:70–81

    Article  CAS  PubMed  Google Scholar 

  • Shen G, Pang Y, Wu W, Deng Z, Liu X, Lin J, Zhao L, Sun XF, Tang KX (2005) Molecular cloning, characterization and expression of a novel Asr gene from Ginkgo biloba. Plant Physiol Biochem 43:836–843

    Article  CAS  PubMed  Google Scholar 

  • Shinozaki K, Yamaguchi-Shinozaki K (2007) Gene networks involved in drought stress response and tolerance. J Exp Bot 58:221–227

    Article  CAS  PubMed  Google Scholar 

  • Siddiqui S, Brackmann A, Streif J, Bangerth F (1996) Controlled atmosphere storage of apples: cell wall composition and fruit softening. J Hortic Sci 71:613–620

    Article  Google Scholar 

  • Sun L, Sun Y, Zhang M, Wang L, Ren J, Cui M, et al (2012) Suppression of 9-cis-epoxycarotenoid dioxygenase, which encodes a key enzyme in abscisic acid biosynthesis, alters fruit texture in transgenic tomato. Plant Physiol 158(1):283–298

    Article  PubMed  PubMed Central  Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum Parsimony methods. Mol Biol Evol 28:2731–2739

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tanaka Y, Sasaki N, Ohmiya A (2008) Biosynthesis of plant pigments: anthocyanins, betalains and carotenoids. Plant J 54:733–749

    Article  CAS  PubMed  Google Scholar 

  • Uluisik S, Chapman NH, Smith R, Poole M, Adams G, Gillis RB et al (2016) Genetic improvement of tomato by targeted control of fruit softening. Nat Biotechnol 34(9):950–952

    Article  CAS  PubMed  Google Scholar 

  • Vaidyanathan R, Kuruvilla S, Thomas G (1999) Characterization and expression pattern of an abscisic acid and osmotic stress responsive gene from rice. Plant Sci 140:25–36

    Article  Google Scholar 

  • Verslues PE, Zhu JK (2005) Before and beyond ABA: upstream sensing and internal signals that determine ABA accumulation and response under abiotic stress. Biochem Soc Trans 33:375–379

    Article  CAS  PubMed  Google Scholar 

  • Virlouvet L, Jacquemot MP, Gerentes D, Corti H, Bouton S, Gilard F, Valot B, Trouverie J, Tcherkez G, Falque M, Damerval C, Rogowsky P, Perez P, Noctor G, Zivy M, Coursol S (2011) The ZmASR1 protein influences branched-chain amino acid biosynthesis and maintains kernel yield in maize under water-limited conditions. Plant Physiol 157:917–936

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wen XC, Han J, Leng XP, Ma RJ, Jiang WB, Fang JG (2014) Cloning and expression analysis of a UDP-glucose: flavonoid 3-O-glucosyltransferase gene in peach flowers. Genet Mol Res 13(4):10067–10075

    Article  CAS  PubMed  Google Scholar 

  • Xiong L, Zhu JK (2001) Abiotic stress signal transduction in plants: Molecular and genetic perspectives. Physiol Plant 112(2):152–166

    Article  CAS  PubMed  Google Scholar 

  • Yang CY, Chen YC, Jauh GY, Wang CS (2005) A Lily ASR protein involves abscisic acid signaling and confers drought and salt resistance in Arabidopsis. Plant Physiol 139:836–846

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang CY, Wu CH, Jauh GY, Huang JC, Lin CC, Wang CS (2008) The LLA23 protein translocates into nuclei shortly before desiccation in developing pollen grains and regulates gene expression in Arabidopsis. Protoplasma 233:241–254

    Article  CAS  PubMed  Google Scholar 

  • Zhang L, Hu W, Wang Y, Feng R, Zhang Y, Liu J, Jia C, Miao H, Zhang J, Xu B, Jin Z (2015) The MaASR gene as a crucial component in multiple drought stress response pathways in Arabidopsis. Funct Integr Genom 15:247–260

    Article  CAS  Google Scholar 

  • Zheng H, Zhang Q, Quan J, Zheng Q, Xi W (2016) Determination of sugars, organic acids, aroma components, and carotenoids in grapefruit pulps. Food Chem 205:112–121

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to express our gratitude to Jiangsu Academy of Agricultural Sciences for providing the peach material. This work was supported by the Special Fund for Agro-scientific Research in the Public Interest (No. 201503121).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hu Feng.

Ethics declarations

Conflict of interest

The authors declared that they have no conflict of interests.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 528 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiaxing, W., Feng, H., Weibing, J. et al. Functional Analysis of Abscisic Acid-Stress Ripening Transcription Factor in Prunus persica f. atropurpurea. J Plant Growth Regul 37, 85–100 (2018). https://doi.org/10.1007/s00344-017-9695-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00344-017-9695-5

Keywords

Navigation