Skip to main content

Advertisement

Log in

Effects of Nitrogen and Exogenous Rhizophagus irregularis on the Nutrient Status, Photosynthesis and Leaf Anatomy of Populus × canadensis ‘Neva’

  • Published:
Journal of Plant Growth Regulation Aims and scope Submit manuscript

Abstract

The productivity of poplar is associated with large nitrogen (N) requirements. Exogenous arbuscular mycorrhizal fungi (AMF) show potential for use as bio-fertilizers. Understanding the interaction between N and exogenous AMF has theoretical and practical significance for poplar plantation. A pot experiment was conducted to assess the effects of N and exogenous Rhizophagus irregularis on plant growth, nutrient uptake, photosynthesis, water status, and leaf anatomical properties of Populus × canadensis ‘Neva’ in natural soil. The results showed that N fertilization increased plant growth, net photosynthesis, water status and the conduit diameter of midribs. The concentrations of carbon (C) and N in leaves were increased, but the phosphorus (P) concentration was decreased by N fertilization. The effectiveness of exogenous R. irregularis varied under different N levels. Under low N levels, exogenous R. irregularis-inoculated plants grew faster and exhibited superior photosynthetic capacity, water status and leaf conduit diameters than non-inoculated plants. Under high N levels, C, N and P concentrations were enhanced by exogenous R. irregularis inoculation. Furthermore, the average conduit diameter of midribs presented a significant positive correlation with plant growth parameters, photosynthesis, relative water content (RWC) and leaf C and N concentrations. It was concluded that exogenous R. irregularis exerted the strongest positive effects under low N levels by promoting plant growth and photosynthesis, and the fungus promoted plant nutrition decoupled from the level of N fertilization. Moreover, the improvement of plant physiological traits due to N fertilization or exogenous R. irregularis inoculation was accompanied by changes in internal anatomical properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Bago B, Cano C, Azcón-Aguilar C, Samson J, Coughlan AP, Piche Y (2004) Differential morphogenesis of the extraradical mycelium of an arbuscular mycorrhizal fungus grown monoxenically on spatially heterogeneous culture media. Mycologia 96:452–462

    Article  PubMed  Google Scholar 

  • Brodribb TJ, Feild TS, Jordan GJ (2007) Leaf maximum photosynthetic rate and venation are linked by hydraulics. Plant Physiol 144:1890–1898

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ceballos I, Ruiz M, Fernández C, Peña R, Rodríguez A, Sanders IR (2013) The in vitro mass-produced model mycorrhizal fungus, Rhizophagus irregularis, significantly increases yields of the globally important food security crop cassava. PLOS ONE 8:e70633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chu H, Lin X, Fujii T, Morimoto S, Yagi K, Hu J, Zhang J (2007) Soil microbial biomass, dehydrogenase activity, bacterial community structure in response to long-term fertilizer management. Soil Biol Biochem 39:2971–2976

    Article  CAS  Google Scholar 

  • Coleman M, Tolsted D, Nichols T, Johnson WD, Wene EG, Houghtaling T (2006) Post-establishment fertilization of Minnesota hybrid poplar plantations. Biomass Bioenerg 30:740–749

    Article  Google Scholar 

  • Cooke JEK, Martin TA, Davis JM (2005) Short-term physiological and developmental responses to nitrogen availability in hybrid poplar. New Phytol 167:41–52

    Article  CAS  PubMed  Google Scholar 

  • Dié A, Kitin P, Kouamé FNG, Van den Bulcke J, Van Acker J, Beeckman H (2012) Fluctuations of cambial activity in relation to precipitation result in annual rings and intra-annual growth zones of xylem and phloem in teak (Tectona grandis) in Ivory Coast. Ann Bot 110:861–873

    Article  PubMed  PubMed Central  Google Scholar 

  • Dodd IC, Ruiz-Lozano JM (2012) Microbial enhancement of crop resource use efficiency. Curr Opin Biotechnol 23:236–242

    Article  CAS  PubMed  Google Scholar 

  • Engelmoer DJP, Behm JE, Kiers ET (2014) Intense competition between arbuscular mycorrhizal mutualists in an in vitro root microbiome negatively affects total fungal abundance. Mol Ecol 23:1584–1593

    Article  CAS  PubMed  Google Scholar 

  • Fellbaum CR, Gachomo EW, Beesetty Y, Choudhari S, Strahan GD, Pfeffer PE, Kiers ET, Bücking H (2012) Carbon availability triggers fungal nitrogen uptake and transport in arbuscular mycorrhizal symbiosis. Proc Natl Acad Sci USA 109:2666–2671

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Feng XP, Chen Y, Qi YH, Yu CL, Zheng BS, Brancourt-Hulmel M, Jiang DA (2012) Nitrogen enhanced photosynthesis of Miscanthus by increasing stomatal conductance and phosphoenolpyruvate carboxylase concentration. Photosynthetica 50:577–586

    Article  CAS  Google Scholar 

  • Fonseca HM, Berbara RL, Daft MJ (2001) Shoot δ15N and δ13C values of non-host Brassica rapa change when exposed to ± Glomus etunicatum inoculum and three levels of phosphorus and nitrogen. Mycorrhiza 11:151–158

    Article  PubMed  Google Scholar 

  • Haberer G, Kieber JJ (2002) Cytokinins. New insights into a classic phytohormone. Plant Physiol 128:354–362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hacke UG, Plavcová L, Almeida-Rodriguez A, King-Jones S, Zhou W, Cooke JEK (2010) Influence of nitrogen fertilization on xylem traits and aquaporin expression in stems of hybrid poplar. Tree Physiol 30:1016–1025

    Article  CAS  PubMed  Google Scholar 

  • Hansen EA, McLaughlin RA, Pope PE (1988) Biomass and nitrogen dynamics of hybrid poplar on two different soils: implications for fertilization strategy. Can J For Res 18:223–230

    Article  Google Scholar 

  • He F, Zhang H, Tang M (2016) Aquaporin gene expression and physiological responses of Robinia pseudoacacia L. to the mycorrhizal fungus Rhizophagus irregularis and drought stress. Mycorrhiza 26:311–323

    Article  CAS  PubMed  Google Scholar 

  • Johansen A, Jakobsen I, Jensen ES (1994) Hyphal N transport by a vesicular-arbuscular mycorrhizal fungus associated with cucumber grown at three nitrogen levels. Plant Soil 160:1–9

    Article  CAS  Google Scholar 

  • Johnson NC (2010) Resource stoichiometry elucidates the structure and function of arbuscular mycorrhizas across scales. New Phytol 185:631–647

    Article  CAS  PubMed  Google Scholar 

  • Kiers ET, Duhamel M, Beesetty Y, Mensah JA, Franken O, Verbruggen E, Fellbaum CR, Kowalchuk GA, Hart MM, Bago A, Palmer TM, West SA, Vandenkoornhuyse P, Jansa J, Bücking H (2011) Reciprocal rewards stabilize cooperation in the mycorrhizal symbiosis. Science 333:880–882

    Article  CAS  PubMed  Google Scholar 

  • Kong Z, Glick BR, Duan J, Ding S, Tian J, McConkey BJ, Wei G (2015) Effects of 1-aminocyclopropane-1-carboxylate (ACC) deaminase-overproducing Sinorhizobium meliloti on plant growth and copper tolerance of Medicago lupulina. Plant Soil 391:383–398

    Article  CAS  Google Scholar 

  • Labidi S, Jeddi FB, Tisserant B, Yousfi M, Sanaa M, Dalpé Y, Sahraoui ALH (2015) Field application of mycorrhizal bio-inoculants affects the mineral uptake of a forage legume (Hedysarum coronarium L.) on a highly calcareous soil. Mycorrhiza 25:297–309

    Article  CAS  PubMed  Google Scholar 

  • Larson PR, Isebrands JG (1971) The plastochron index as applied to developmental studies of cottonwood. Can J Forest Res 1:1–11

    Article  Google Scholar 

  • Li C, Korpelainen H (2015) Transcriptomic regulatory network underlying morphological and physiological acclimation to nitrogen starvation and excess in poplar roots and leaves. Tree Physiol 35:1279–1282

    Article  CAS  PubMed  Google Scholar 

  • Li H, Li X, Dou Z, Zhang J, Wang C (2012) Earthworm (Aporrectodea trapezoides)-mycorrhiza (Glomus intraradices) interaction and nitrogen and phosphorus uptake by maize. Biol Fertil Soils 48:75–85

    Article  Google Scholar 

  • Li Z, Wu N, Liu T, Chen H, Tang M (2015) Effect of arbuscular mycorrhizal inoculation on water status and photosynthesis of Populus cathayana males and females under water stress. Physiol Plant 155:192–204

    Article  CAS  Google Scholar 

  • Liu T, Wang C, Chen H, Fang F, Zhu X, Tang M (2014) Effects of arbuscular mycorrhizal colonization on the biomass and bioenergy production of Populus × canadensis ‘Neva’ in sterilized and unsterilized soil. Acta. Physiol Plant 36:871–880

    CAS  Google Scholar 

  • Liu T, Sheng M, Wang CY, Chen H, Li Z, Tang M (2015) Impact of arbuscular mycorrhizal fungi on the growth, water status and photosynthesis of hybrid poplar under drought stress and recovery. Photosynthetica 53:250–258

    Article  CAS  Google Scholar 

  • Marulanda A, Azcón R, Ruiz-Lozano JM (2003) Contribution of six arbuscular mycorrhizal fungal isolates to water uptake by Lactuca sativa plants under drought stress. Physiol Plant 119:526–533

    Article  CAS  Google Scholar 

  • McGonigle TP, Miller MH, Evans DG, Fairchild GL, Swan JA (1990) A new method which gives an objective measure of colonization of roots by vesicular-arbuscular mycorrhizal fungi. New Phytol 115:495–501

    Article  Google Scholar 

  • Monclus R, Dreyer E, Villar M, Delmotte FM, Delay D, Petit JM, Barbaroux C, Le Thiec D, Bréchet C, Brignolas F (2006) Impact of drought on productivity and water use efficiency in 29 genotypes of Populus deltoides × Populus nigra. New Phytol 169:765–777

    Article  PubMed  Google Scholar 

  • Ohashi-Ito K, Fukuda H (2014) Xylem. Curr Biol 24:R1149

    Article  CAS  PubMed  Google Scholar 

  • Olsson PA, Burleigh SH, van Aarle IM (2005) The influence of external nitrogen on carbon allocation to Glomus intraradices in monoxenic arbuscular mycorrhiza. New Phytol 168:677–686

    Article  CAS  PubMed  Google Scholar 

  • Pellegrino E, Turrini A, Gamper HA, Cafà G, Bonari E, Young JPW, Giovannetti M (2012) Establishment, persistence and effectiveness of arbuscular mycorrhizal fungi inoculants in the field revealed using molecular genetic tracing and measurement of yield components. New Phytol 194:810–822

    Article  CAS  PubMed  Google Scholar 

  • Peuke AD (2009) Nutrient composition of leaves and fruit juice of grapevine as affected by soil and nitrogen fertilization. J Plant Nutr Soil Sc 172:557–564

    Article  CAS  Google Scholar 

  • Phillips JM, Hayman DS (1970) Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Trans Br Mycol Soc 55:158–161

    Article  Google Scholar 

  • Plavcová L, Hacke UG, Almeida-Rodriguez AM, Li E, Douglas CJ (2013) Gene expression patterns underlying changes in xylem structure and function in response to increased nitrogen availability in hybrid poplar. Plant Cell Environ 36:186–199

    Article  PubMed  Google Scholar 

  • Price CA, Enquist BJ (2007) Scaling mass and morphology in leaves: an extension of the WBE model. Ecology 88:1132–1141

    Article  PubMed  Google Scholar 

  • Sack L, Scoffoni C (2013) Leaf venation: structure, function, development, evolution, ecology and applications in the past, present and future. New Phytol 198:983–1000

    Article  PubMed  Google Scholar 

  • Scarpella E, Meijer AH (2004) Pattern formation in the vascular system of monocot and dicot plant species. New Phytol 164:209–242

    Article  CAS  Google Scholar 

  • Smith SE, Read DJ (2008) Mycorrhizal symbiosis. 3rd edn. Academic Press, New York

    Google Scholar 

  • Smith SE, Smith FA (2011) Roles of arbuscular mycorrhizas in plant nutrition and growth: new paradigms from cellular to ecosystem scales. Annu Rev Plant Biol 62:227–250

    Article  CAS  PubMed  Google Scholar 

  • Smith SE, Smith FA, Jakobsen I (2004) Functional diversity in arbuscular mycorrhizal (AM) symbioses: the contribution of the mycorrhizal P uptake pathway is not correlated with mycorrhizal responses in growth or total P uptake. New Phytol 162:511–524

    Article  Google Scholar 

  • Sultan SE (2000) Phenotypic plasticity for plant development, function and life history. Trends Plant Sci 5:537–542

    Article  CAS  PubMed  Google Scholar 

  • Sýkorová Z, Börstler B, Zvolenská S, Fehrer J, Gryndler M, Vosátka M, Redecker D (2012) Long-term tracing of Rhizophagus irregularis isolate BEG140 inoculated on Phalaris arundinacea in a coal mine spoil bank, using mitochondrial large subunit rDNA markers. Mycorrhiza 22:69–80

    Article  PubMed  Google Scholar 

  • Tjoelker MG, Oleksyn J, Reich PB (1998) Seedlings of five boreal tree species differ in acclimation of net photosynthesis to elevated CO2 and temperature. Tree Physiol 18:715–726

    Article  PubMed  Google Scholar 

  • Treseder KK (2004) A meta-analysis of mycorrhizal responses to nitrogen, phosphorus, and atmospheric CO2 in field studies. New Phytol 164:347–355

    Article  Google Scholar 

  • Treseder KK, Allen MF (2002) Direct nitrogen and phosphorus limitation of arbuscular mycorrhizal fungi: a model and field test. New Phytol 155:507–515

    Article  Google Scholar 

  • Tyree MT (2003) Plant hydraulics: the ascent of water. Nature 423:923–923

    Article  CAS  PubMed  Google Scholar 

  • van den Driessche R (1999) First-year growth response of four Populus trichocarpa × Populus deltoides clones to fertilizer placement and level. Can J Forest Res 29:554–562

    Google Scholar 

  • Woodruff DR, Meinzer FC, Lachenbruch B (2008) Height-related trends in leaf xylem anatomy and shoot hydraulic characteristics in a tall conifer: safety versus efficiency in water transport. New Phytol 180:90–99

    Article  CAS  PubMed  Google Scholar 

  • Wu F, Bao W, Li F, Wu N (2008) Effects of drought stress and N supply on the growth, biomass partitioning and water-use efficiency of Sophora davidii seedlings. Environ Exp Bot 63:248–255

    Article  CAS  Google Scholar 

  • Yan Z, Kim N, Han W, Guo Y, Han T, Du E, Fang J (2015) Effects of nitrogen and phosphorus supply on growth rate, leaf stoichiometry, and nutrient resorption of Arabidopsis thaliana. Plant Soil 388:147–155

    Article  CAS  Google Scholar 

  • Yang Y, Tang M, Sulpice R, Chen H, Tian S, Ban Y (2014) Arbuscular mycorrhizal fungi alter fractal dimension characteristics of Robinia pseudoacacia L. seedlings through regulating plant growth, leaf water status, photosynthesis, and nutrient concentration under drought stress. J Plant Growth Regul 33:612–625

    Article  CAS  Google Scholar 

  • Yasumura Y, Hikosaka K, Hirose T (2007) Nitrogen resorption and protein degradation during leaf senescence in Chenopodium album grown in different light and nitrogen conditions. Funct Plant Biol 34:409–417

    Article  CAS  Google Scholar 

  • Yu C, Lv DG, Qin SJ, Yang L, Ma HY, Liu GC (2010) Changes in photosynthesis, fluorescence, and nitrogen metabolism of hawthorn (Crataegus pinnatifida) in response to exogenous glutamic acid. Photosynthetica 48:339–347

    Article  CAS  Google Scholar 

  • Zhen L, Yang G, Yang H, Chen Y, Liu N, Zhang Y (2014) Arbuscular mycorrhizal fungi affect seedling recruitment: a potential mechanism by which N deposition favors the dominance of grasses over forbs. Plant Soil 375:127–136

    Article  CAS  Google Scholar 

  • Zhu XC, Song FB, Liu SQ, Liu TD (2011) Effects of arbuscular mycorrhizal fungus on photosynthesis and water status of maize under high temperature stress. Plant Soil 346:189–199

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Natural Science Foundation of China (41671268 and 31270639, http://www.nsfc.gov.cn/), and the Shaanxi Science and Technology Innovation Project Plan (2016KTCL02-07).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming Tang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Fei Wu and Haoqiang Zhang have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, F., Zhang, H., Fang, F. et al. Effects of Nitrogen and Exogenous Rhizophagus irregularis on the Nutrient Status, Photosynthesis and Leaf Anatomy of Populus × canadensis ‘Neva’. J Plant Growth Regul 36, 824–835 (2017). https://doi.org/10.1007/s00344-017-9686-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00344-017-9686-6

Keywords

Navigation