Skip to main content
Log in

The Role of Photoreceptors in Response to Cucumber Mosaic Virus in Arabidopsis thaliana

  • Published:
Journal of Plant Growth Regulation Aims and scope Submit manuscript

Abstract

It is well known that light is involved in the plant immunity system. However, the mechanisms by which photoreceptors interfere with plant resistance to viruses remain largely unclear. In this study, we explored the defense response systems in different photoreceptor-defective mutants after cucumber mosaic virus (CMV) inoculation. We monitored the physiological and molecular changes of these mutants under virus attack. The results showed that mutants were more susceptible to CMV infection and suffered more serious oxidative damage compared with Col-0 plants. Furthermore, we found the transcription levels of defense-associated genes and the activities of some antioxidant enzymes in the mutants were much lower than those in Col-0 plants. Interestingly, the photosynthetic efficiency and respiratory rate in photoreceptor-defective mutants seemed to be abnormal compared with Col-0 plants after CMV infection. Furthermore, the integrities of chloroplasts and mitochondria of mutants were severely damaged after virus infection especially in phyB, phot2, and cry1 plants. In conclusion, our study demonstrated that the photoreceptors, PHYB, PHOT2, and CRY1, play important roles in affecting the defense of Arabidopsis thaliana against CMV infection and, to the best our knowledge, it is the first time that such comparison of the defense mechanisms of different photoreceptors against CMV stress has been made.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Balaji V, Mayrose M, Sherf O, Jacob-Hirsch J, Eichenlaub R, Iraki N, Manulis-Sasson S, Rechavi G, Sessa Barash I, Sessa G (2008) Tomato transcriptional changes in response to Clavibacter michiganensis subsp. michiganensis reveal a role for ethylene in disease development. Plant Physiol 146:1797–1809

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baxter A, Mittler R, Suzuki N (2014) ROS as key players in plant stress signaling. J Exp Bot 65:1229–1240

    Article  CAS  PubMed  Google Scholar 

  • Bilger W, Björkman O (1990) Role of the xanthophyll cycle in photoprotection elucidated by measurements of light-induced absorbance changes, fluorescence and photosynthesis in leaves of Hedera canariensis. Photosynth Res 25:173–185

    Article  CAS  PubMed  Google Scholar 

  • Boller T (1991) Ethylene in pathogenesis and disease resistance. In: The plant hormone ethylene, pp 293–314

  • Casal JJ (2000) Phytochromes, cryptochromes, phototropin: photoreceptor interactions in plants. Photochem Photobiol 71:1–11

    Article  CAS  PubMed  Google Scholar 

  • Cerrudo I, Keller MM, Cargnel MD, Demkura PV, Wit Md, Patitucci MS, Pierik R, Pieterse CMJ, Ballaré CL (2012) Low red/far-red ratios reduce Arabidopsis resistance to Botrytis cinerea and jasmonate responses via a COI1-JAZ10-dependent, salicylic acid-independent mechanism. Plant Physiol 158:2042–2052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chandra-Shekara AC, Gupte M, Navarre D, Raina S, Raina R, Klessig D, Kachroo P (2006) Light -dependent hypersensitive response and resistance signaling against turnip crinkle virus in Arabidopsis. Plant J 45:320–334

    Article  CAS  PubMed  Google Scholar 

  • Chen M, Chory J, Fankhauser C (2004) Light signal transduction in higher plants. Annu Rev Genet 38:87–117

    Article  CAS  PubMed  Google Scholar 

  • Chory J (1997) Light modulation of vegetative development. Plant Cell 9:1225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cohen Y, Gisi U, Niderman T (1993) Local and systemic protection against Phytophthora infestans induced in potato and tomato plants by jasmonic acid and jasmonic methylester. Phytopathol 83:1054–1062

    Article  CAS  Google Scholar 

  • Cummins I, Wortley DJ, Sabbadin F, He Z, Coxon CR, Straker HE, Sellars JD, Knight K, Edwards L, Hughes D, Kaundun SS, Hutchings S, Steel PG, Edwards R (2013) Key role for a glutathione transferase in multiple-herbicide resistance in grassweeds. Proc Natl Acad Sci USA 110:5812–5817

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Danon A, CollN S, Apel K (2006) Cryptochrome-1-dependent execution of programmed cell death induced by singlet oxygen in Arabidopsis thaliana. Proc Natl Acad Sci USA 103:17036–17041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dong X (2001) Genetic dissection of systemic acquired resistance. Curr Opin Plant Biol 4:309–314

    Article  CAS  PubMed  Google Scholar 

  • Finlayson SA, Lee IJ, Morgan PW (1998) Phytochrom Band the regulation of circadian ethylene production in sorghum. Plant Physiol 116:17–25

    Article  CAS  PubMed Central  Google Scholar 

  • Fonseca S, Chini A, Hamberg M, Adie B, Porzel A, Kramell R, Miersch O, Wasternack C, Solano R (2009) (+)-7-iso-Jasmonoyl-l-isoleucine is the endogenous bioactive jasmonate. Nat Chem Biol 5:344–350

    Article  CAS  PubMed  Google Scholar 

  • Fu ZQ, Dong X (2013) Systemic acquired resistance: turning local infection into global defense. Annu Rev Plant Biol 64:839–863

    Article  CAS  PubMed  Google Scholar 

  • Genty B, Briantais JM, Baker NR (1989) The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochimica Biophysica Acta 990:87–92

    Article  CAS  Google Scholar 

  • Glazebrook J (2005) Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens. Annu Rev Phytopathol 43:205–227

    Article  CAS  PubMed  Google Scholar 

  • Griebel T, Zeier J (2008) Light regulation and daytime dependency of inducible plant defenses in Arabidopsis: phytochrome signaling controls systemic acquired resistance rather than local defense. Plant Physiol 147:790–801

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo DP, Guo YP, Zhao JP, Liu H, Peng Y, Wang QM, Chen JS, Rao GZ (2005) Photosynthetic rate and chlorophyll fluorescence in leaves of stem mustard (Brassica juncea var. tsatsai) after turnip mosaic virus infection. Plant Sci 168:57–63

    Article  CAS  Google Scholar 

  • He K, Gou X, Yuan T, Lin H, Asami T, Yoshida S, Russell SD, Li J (2007) BAK1 and BKK1 regulate brassinosteroid-dependent growth and brassinosteroid-independent cell-death pathways. Curr Biol 17:1109–1115

    Article  CAS  PubMed  Google Scholar 

  • Huang J, Gu M, Lai Z, Fan B, Shi K, Zhou YH, Yu JQ, Chen Z (2010) Functional analysis of the Arabidopsis PAL gene family in plant growth, development, and response to environmental stress. Plant Physiol 153:1526–1538

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Izaguirre MM, Mazza CA, Biondin M, Baldwin IT, Ballaré CL (2006) Remote sensing of future competitors: impacts on plant defenses. Pro Nat Sci 103:7170–7174

    Article  CAS  Google Scholar 

  • Jeong RD, Chandra-Shekara AC, Barman SR, Navarre D, Klessig DF, Kachroo A, Kachroo P (2010) Cryptochrome2 and phototropin2 regulate resistance protein-mediated viral defense by negatively regulating an E3 ubiquitin ligase. Pro Nat Sci 107:13538–13543

    Article  CAS  Google Scholar 

  • Karpinski S, Gabrys H, Mateo A, Karpinska B, Mullineaux PM (2003) Light perception in plant disease defence signalling. Curr Biol 6:390–396

    CAS  Google Scholar 

  • Kazan K (2015) Diverse roles of jasmonates and ethylene in abiotic stress tolerance. Trends Plant Sci 20:219–229

    Article  CAS  PubMed  Google Scholar 

  • Kong SG, Suzuki T, Tamura K, Mochizuki N, Hara-Nishimura I, Nagatani A (2006) Blue light-induced association of phototropin2 with the golgi apparatus. Plant J 45:994–1005

    Article  CAS  PubMed  Google Scholar 

  • Kunkel BN, Brooks DM (2002) Cross talk between signaling pathways in pathogen defense. Curr boil 5:325–331

    CAS  Google Scholar 

  • Lei T, Feng H, Sun X, Dai QL, Zhang F, Liang HG, Lin HH (2010) The alternative pathway in cucumber seedlings under low temperature stress was enhanced by salicylic acid. Plant Growth Regul 60:35–42

    Article  CAS  Google Scholar 

  • Matsukawa M, Shibata Y, Ohtsu M, Mizutani A, Mori H, Wang P, Ojika M, Kawakita K, Takemoto D (2013) Nicotiana benthamiana calreticulin 3a is required for the ethylene-mediated production of phytoalexins and disease resistance against oomycete pathogen Phytophthora infestans. Mol Plant Microbe In 26:880–892

    Article  CAS  Google Scholar 

  • McCormac AC, Terry MJ (2002) Light-signalling pathways leading to the coordinated expression of HEMA1 and Lhcb during chloroplast development in Arabidopsis thaliana. Plant J 32:549–559

    Article  CAS  PubMed  Google Scholar 

  • Moreno JE, Tao Y, Chory J, Ballaré CL (2009) Ecological modulation of plant defense via phytochrome control of jasmonate sensitivity. Plant Sci 106:4935–4940

    CAS  Google Scholar 

  • Murphy AM, Gilliland A, York CJ, Hyman B, Carr JP (2004) High-level expression of alternative oxidase protein sequences enhances the spread of viral vectors in resistant and susceptible plants. J Gen Virol 85:3777–3786

    Article  CAS  PubMed  Google Scholar 

  • Norman-Setterblad C, Vidal S, Palva ET (2000) Interacting signal pathways control defense gene expression in Arabidopsis in response to cell wall-degrading enzymes from Erwinia carotovora. Mol Plant Microbe In 13:430–438

    Article  CAS  Google Scholar 

  • O’Brien JA, Daudi A, Butt VS, Bolwell GP (2012) Reactive oxygen species and their role in plant defence and cell wall metabolism. Planta 236:765–779

    Article  PubMed  Google Scholar 

  • Peng X, Hu Y, Tang X, Zhou P, Deng X, Wang H, Guo Z (2012) Constitutive expression of rice WRKY30 gene increases the endogenous jasmonic acid accumulation, PR gene expression and resistance to fungal pathogens in rice. Planta 236:1485–1498

    Article  CAS  PubMed  Google Scholar 

  • Pierik R, Cuppens MLC, Voesenek LACJ, Visser EJW (2004) Interactions between ethylene and gibberellins in phytochrome-mediated shade avoidance responses in tobacco. Plant Physiol 136:2928–2936

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pieterse CM, Leon-Reyes A, Van der Ent S, Van Wees SC (2009) Networking by small-molecule hormones in plant immunity. Natl Chem Biol 5:308–316

    Article  CAS  Google Scholar 

  • Qi Y, Katagiri F (2009) Purification of low-abundance Arabidopsis plasma-membrane protein complexes and identification of candidate components. Plant J 57:932–944

    Article  CAS  PubMed  Google Scholar 

  • Rahoutei J, García-Luque I, Barón M (2000) Inhibition of photosynthesis by viral infection: effect on PSII structure and function. Physiol Plant 110:286–292

    Article  CAS  Google Scholar 

  • Rusaczonek A, Czarnocka W, Kacprzak S, Witoń D, Ślesak I, Szechyńska-Hebda M, Gawroński P, Karpiński S (2015) Role of phytochromes A and B in the regulation of cell death and acclimatory responses to UV stress in Arabidopsis thaliana. J Exp Bot 66(21):6679–6695. doi:10.1093/jxb/erv375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ryals JA, Neuenschwander UH, Willits MG, Molina A, Steiner HY, Hunt MD (1996) Systemic acquired resistance. Plant cell 8:1809

    CAS  PubMed  Google Scholar 

  • Schäfer E, Bowler C (2002) Phytochrome-mediated photoperception and signal transduction in higher plants. EMBO Rep 3:1042–1048

    Article  PubMed  PubMed Central  Google Scholar 

  • Shang J, Xi DH, Xu F, Wang SD, Cao S, Xu MY, Zhao PP, Wang JH, Jia SD, Zhang ZW, Yuan S, Lin HH (2011) A broad-spectrum, efficient and nontransgenic approach to control plant viruses by application of salicylic acid and jasmonic acid. Planta 233:299–308

    Article  CAS  PubMed  Google Scholar 

  • Spoel SH, Koornneef A, Claessens SMC, Korzelius JP, Pelt JV, Mueller MJ, Buchala AJ, Métraux JP, Brown R, Kazan K, Loon LCV, Dong X, Pieterse CMJ (2003) NPR1 modulates cross-talk between salicylate-and jasmonate-dependent defense pathways through a novel function in the cytosol. Plant Cell 15:760–770

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Szechyńska-Hebda M, Kruk J, Górecka M, Karpińska B, Karpiński S (2010) Evidence for light wavelength-specific photoelectrophysiological signaling and memory of excess light episodes in Arabidopsis. Plant Cell 22:2201–2218

    Article  PubMed  PubMed Central  Google Scholar 

  • Thomma BP, Eggermont K, Tierens KFJ, Broekaert WF (1999) Requirement of Functional Ethylene-Insensitive 2Gene for Efficient Resistance of Arabidopsis to Infection by Botrytis cinerea. Plant Physiol 121:1093–1101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Truman W, Bennett M, Kubigsteltig I, Turnbull C, Grant M (2007) Arabidopsis systemic immunity uses conserved defense signaling pathways and is mediated by jasmonates. Proc Natl Acad Sci USA 104:1075–1080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Van Wees SC, De Swart EA, Van Pelt JA, Van Loon LC, Pieterse CM (2000) Enhancement of induced disease resistance by simultaneous activation of salicylate-and jasmonate-dependent defense pathways in Arabidopsis thaliana. Proc Natl Acad Sci 97:8711–8716

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang H, Liu G, Li C, Powell ALT, Reid MS, Zhang Z, Jiang CZ (2013) Defence responses regulated by jasmonate and delayed senescence caused by ethylene receptor mutation contribute to the tolerance of petunia to Botrytis cinerea. Mol plant pathol 14:453–469

    Article  CAS  PubMed  Google Scholar 

  • Wang SD, Zhu F, Yuan S, Yang H, Xu F, Shang J, Xu MY, Jia SD, Zhang ZW, Wang JH, Xi DH, Lin HH (2011) The roles of ascorbic acid and glutathione in symptom alleviation to SA-deficient plants infected with RNA viruses. Planta 234:171–181

    Article  CAS  PubMed  Google Scholar 

  • Wu L, Yang HQ (2010) CRYPTOCHROME1 is implicated in promoting R protein-mediated plant resistance to Pseudomonas syringae in Arabidopsis. Mol Plant 3:539–548

    Article  CAS  PubMed  Google Scholar 

  • Wu Y, Zhang D, Chu JY, Boyle P, Wang Y, Brindle ID, Luca VD, Després C (2012) The Arabidopsis NPR1 protein is a receptor for the plant defense hormone salicylic acid. Cell Rep 1:639–647

    Article  CAS  PubMed  Google Scholar 

  • Yang YX, Wang MM, Yin YL, Onac E, Zhou GF, Peng S, Xia XJ, Shi K, Yu JQ, Zhou YH (2015) RNA-seq analysis reveals the role of red light in resistance against Pseudomonas syringae pv. tomato DC3000 in tomato plants. BMC Genom 16:120

    Article  Google Scholar 

  • Yu X, Klejnot J, Zhao X, Shalitin D, Maymon M, Yang H, Lee J, Liu X, Lopez J, Lin C (2007) Arabidopsis cryptochrome 2 completes its posttranslational life cycle in the nucleus. Plant Cell 19:3146–3156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang DW, Xu F, Zhang ZW, Chen YE, Du JB, Jia SD, Yuan S, Lin HH (2010) Effects of light on cyanide-resistant respiration and alternative oxidase function in Arabidopsis seedlings. Plant Cell Environ 33:2121–2131

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (31270290, 31171835).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to De-Hui Xi.

Additional information

Xue Zhou and Tong Zhu have contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Table 1. Primers used in this study (DOCX 18 kb).

Supplementary Fig. 1. Electron micrographs of photoreceptor mutants noninoculated with CMV. (TIFF 227 kb).

344_2016_9635_MOESM3_ESM.tif

Supplementary Fig. 2. SA- synthesis (A) and ET-synthesis genes (B) expression levels of Col-0 and mutant plants at 6 days after CMV inoculation. (TIFF 637 kb).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, X., Zhu, T., Zhu, LS. et al. The Role of Photoreceptors in Response to Cucumber Mosaic Virus in Arabidopsis thaliana . J Plant Growth Regul 36, 257–270 (2017). https://doi.org/10.1007/s00344-016-9635-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00344-016-9635-9

Keywords

Navigation