Skip to main content
Log in

Copper-Induced Responses in Poplar Clones are Associated with Genotype- and Organ-Specific Changes in Peroxidase Activity and Proline, Polyamine, ABA, and IAA Levels

  • Published:
Journal of Plant Growth Regulation Aims and scope Submit manuscript

Abstract

The involvement of auxin, abscisic acid (ABA), polyamines (PAs), and proline in adaptation to long-term exposure of woody plants to high levels of heavy metals in soil has received scant attention, even in poplar which is a good candidate for phytoremediation of metal-polluted soils and is regarded as a model for basic research in tree species. Three poplar clones (M1, PE19/66, and B229) were comparatively analyzed in a pot experiment for their responses to 300 mg kg−1 Cu(NO3)2 at morphological, physiological, and biochemical levels. After 4 months, despite the prevalent accumulation of Cu in roots, where the metal reached potentially toxic concentrations, the three clones showed distinct Cu accumulation and translocation capacities, whereas they did not display evident toxicity symptoms or growth inhibition. Several protective mechanisms, namely decreased photosynthetic functionality, enhanced guaiacol peroxidase (GPOD) activity, and accumulation of proline and PAs, were differentially activated in Cu-treated plants in an organ- and clone-specific manner. Overall, a positive relationship between root Cu concentration with GPOD, proline, and PAs was observed. In M1, higher Cu accumulation in roots and leaves compared with other clones was reflected in stimulation of GPOD activity in both organs and in enhanced proline, and PA levels. In PE19/66, these responses were observed only in roots concomitant with high Cu accumulation. Clone B229 accumulated very low amounts of Cu, therefore, these defense responses were attenuated compared with other clones. Enhanced ABA concentrations in response to Cu were observed in PE19/66 and B229; this was likely responsible for stomatal limitation of photosynthesis in PE19/66, whereas in B229 this effect may have been counteracted by increased IAA. Essentially unchanged leaf auxin levels under Cu stress may account for the lack of shoot growth inhibition observed in all three clones; B229 was the only clone that displayed Cu-induced IAA accumulation in roots. Results are discussed in terms of clone-specific adaptive mechanisms to Cu stress in tolerant poplars.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ali MB, Hahn E-J, Paeket K-Y (2006) Copper-induced changes in the growth, oxidative metabolism, and saponin production in suspension culture roots of Panax ginseng in bioreactors. Plant Cell Rep 25:1122–1132. doi:10.1007/s00299-006-0174-x

    Article  CAS  PubMed  Google Scholar 

  • Alloway BJ (1995) Heavy metals in soils. Blackie and Son Ltd., London. ISBN 0751401986

    Book  Google Scholar 

  • Ashger M, Khan MIR, Anjum KNA, Khan NA (2015) Minimising toxicity of cadmium in plants-role of plant growth regulators. Protoplasma 252:399–413. doi:10.1007/s00709-014-0710-4

    Article  Google Scholar 

  • Ashraf M, Foolad MR (2007) Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environ Exp Bot 59:206–216. doi:10.1016/j.envexpbot.2005.12.006

    Article  CAS  Google Scholar 

  • Baker AJM (1981) Accumulators and excluders: strategies in the response of plants to heavy metals. J Plant Nutr 3:643–654. doi:10.1080/01904168109362867

    Article  CAS  Google Scholar 

  • Baker DF, Senef JP (1995) Copper. In: Alloway BJ (ed) Heavy metals in soils. Blackie and Son Ltd., London, pp 179–205

    Chapter  Google Scholar 

  • Bankaji I, Sleimi N, López-Climent MF, Perez-Clemente RM, Gomez-Cadenas A (2014) Effects of combined abiotic stresses on growth, trace element accumulation, and phytohormone regulation in two halophytic species. J Plant Growth Regul 33:632–643. doi:10.1007/s00344-014-9413-5

    Article  CAS  Google Scholar 

  • Baraldi R, Bertazza G, Bregoli A, Fasolo F, Rotondi A, Predieri S, Serafini Fracassini D, Slovin JP, Cohen JD (1995) Auxins and polyamines in relation to differential in vitro root induction on microcuttings of two pear cultivars. J Plant Growth Regul 14:49–59

    Article  CAS  Google Scholar 

  • Bates LS, Waldren RP, Teare IK (1973) Rapid determination of free proline for water stress studies. Plant Soil 39:205–208. doi:10.1007/BF00018060

    Article  CAS  Google Scholar 

  • Bhardwaj R, Sharma I, Handa N, Kapoor D, Kaur H, Gautam V, Kohli S (2014) Role of polyamines in stress management. In: Anjum NA, Gill SS, Gill R (eds) Plant adaptation to environmental changes: significance of amino acids and their derivatives. CABI Publishers, Wallingford, pp 245–265

    Google Scholar 

  • Borghi M, Tognetti R, Monteforti G, Sebastiani L (2007) Responses of Populus×euramericana (P. deltoides×P. nigra) clone Adda to increasing copper concentrations. Environ Exp Bot 61:66–73. doi:10.1016/j.envexpbot.2007.03.001

    Article  CAS  Google Scholar 

  • Borghi M, Tognetti R, Monteforti G, Sebastiani L (2008) Responses of two poplar species (Populus alba and Populus x canadensis) to high copper concentrations. Environ Exp Bot 62:290–299. doi:10.1016/j.envexpbot.2007.10.001

    Article  CAS  Google Scholar 

  • Castiglione S, Todeschini V, Franchin C, Torrigiani P, Gastaldi D, Cicatelli A, Rinaudo C, Berta G, Biondi S, Lingua G (2009) Clonal differences in survival capacity, copper and zinc accumulation, and correlation with leaf polyamine levels in poplar: a large-scale field trial on heavily polluted soil. Environ Pollut 157:2108–2117. doi:10.1016/j.envpol.2009.02.011

    Article  CAS  PubMed  Google Scholar 

  • Chaoui A, El Ferjani E (2005) Effects of cadmium and copper on antioxidant capacities, lignification and auxin degradation in leaves of pea (Pisum sativum L.) seedlings. C.R. Biol 328:23–31. doi:10.1016/j.crvi.2004.10.001

    Article  CAS  PubMed  Google Scholar 

  • Chaves MM, Flexas J, Pinheiro C (2009) Photosynthesis under drought and salt stress: regulation mechanisms from whole plant to cell. Ann Bot 103:551–560. doi:10.1093/aob/mcn125

    Article  CAS  PubMed  Google Scholar 

  • Chen KH, Miller AN, Patterson GW, Cohen JD (1988) A rapid and simple procedure for purification of indole-3-acetic acid prior to GC-SIM-MS analysis. Plant Physiol 86:822–825. doi:10.1104/pp.86.3.822

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen L, Wang L, Chen F, Korpelainen H, Li C (2013) The effects of exogenous putrescine on sex-specific responses of Populus cathayana to copper stress. Ecotoxicol Environ Safe 97:94–102. doi:10.1016/j.ecoenv.2013.07.009

    Article  CAS  Google Scholar 

  • Choudhary SP, Bhardwaj R, Gupta BD, Dutt P, Gupta RK, Biondi S, Kanwar M (2010) Epibrassinolide induces changes in indole-3-acetic acid, abscisic acid and polyamine concentrations and enhances antioxidant potential of radish seedlings under copper stress. Physiol Plant 140:280–296. doi:10.1371/journal.pone.0033210

    CAS  PubMed  Google Scholar 

  • Choudhary SP, Bhardwaj R, Gupta BD, Dutt P, Gupta RK, Kanwar M, Biondi S (2011) Enhancing effects of 24-epibrassinolide and putrescine on the antioxidant capacity and free radical scavenging activity of Raphanus sativus seedlings under Cu ion stress. Acta Physiol Plant 33:1319–1333. doi:10.1016/j.chemosphere.2011.03.056

    Article  CAS  Google Scholar 

  • Choudhary SP, Oral HV, Bhardwaj R, Yu J-Q, Phan Tran L-S (2012) Interaction of brassinosteroids and polyamines enhances copper stress tolerance in Raphanus sativus. J Exp Bot 63:5659–5675. doi:10.1093/jxb/err313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cicatelli A, Lingua G, Todeschini V, Biondi S, Torrigiani P, Castiglione S (2010) Arbuscular mycorrhizal fungi restore normal growth in a white poplar clone grown on heavy metal-contaminated soil, and this is associated with upregulation of foliar metallothionein and polyamine biosynthetic gene expression. Ann Bot 106:791–802. doi:10.3832/ifor1045-007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cuypers A, Vangronsveld J, Clijsters H (2002) Peroxidases in roots and primary leaves of Phaseolus vulgaris copper and zinc phytotoxicity: a comparison. J Plant Physiol 159:869–887. doi:10.1078/0176-1617-00676

    Article  CAS  Google Scholar 

  • Cuypers A, Smeets K, Vangronsveld J (2009) Heavy metal stress in plants. In: Hirt H (ed) Plant stress biology: from genomics to systems biology. Wiley, Weinheim, pp 161–178

    Chapter  Google Scholar 

  • Cuypers A, Smeets K, Ruytinx J, Opdenakker K, Keunen E, Remans T, Horemans N, Vanhoudt N, Van Sanden S, Van Belleghem F, Guisez Y, Colpaert J, Vangronsvel J (2011) The cellular redox state as a modulator in cadmium and copper responses in Arabidopsis thaliana seedlings. J Plant Physiol 168:309–316. doi:10.1016/j.jplph.2010.07.010

    Article  CAS  PubMed  Google Scholar 

  • Dörffling K (2015) the discovery of abscisic acid: a retrospect. J Plant Growth Regul 34:795–808. doi:10.1007/s00344-015-9525-6

    Article  Google Scholar 

  • Dos Santos Utmazian MN, Wieshammer G, Vega R, Wenzel WW (2007) Hydroponic screening for metal resistance and accumulation of cadmium and zinc in twenty clones of willows and poplars. Environ Pollut 148:155–165. doi:10.1016/j.envpol.2006.10.045

    Article  PubMed  Google Scholar 

  • Elobeid M, Polle A (2012) Interference of heavy metal toxicity with auxin physiology. In: Metal toxicity in plants: perception, signaling and remediation. In: Gupta DK, Sandalio LM (eds) Metal toxicity in plants: perception, signaling and remediation. Springer, Heidelberg, pp 249–259

    Chapter  Google Scholar 

  • Elobeid M, Göbel C, Feussner I, Polle A (2012) Cadmium interferes with auxin physiology and lignification in poplar. J Exp Bot 63:1413–1421. doi:10.1093/jxb/err384

    Article  CAS  PubMed  Google Scholar 

  • Franchin C, Fossati T, Pasquini E, Lingua G, Castiglione S, Torrigiani P, Biondi S (2007) High concentrations of zinc and copper induce differential polyamine responses in micropropagated white poplar (Populus alba). Physiol Plant 130:77–90. doi:10.1111/j.1399-3054.2007.00886.x

    Article  CAS  Google Scholar 

  • Gangwar S, Singh VP (2011) Indole acetic acid differently changes growth and nitrogen metabolism in Pisum sativum L. seedlings under chromium (VI) phytotoxicity: implication of oxidative stress. Sci Hortic 129:321–328. doi:10.1016/j.scienta.2011.03.026

    Article  CAS  Google Scholar 

  • Gangwar S, Singh VP, Tripathi DK, Chauhan DK, Prasad SM, Maurya JN (2014) Plant responses to metal stress: the emerging role of plant growth hormones in toxicity alleviation. In: Ahmad P, Rasool S (eds) Emerging technologies and management of crop stress tolerance: volume II—a sustainable approach. Academic Press, Elsevier, San Diego, pp 69–95. doi:10.1016/B978-0-12-800875-1.00010-7

    Google Scholar 

  • Gaudet M, Pietrini F, Beritognolo I, Iori V, Zacchini M, Massacci A, Scarascia Mugnozza G, Sabatti M (2011) Intraspecific variation of physiological and molecular response to cadmium stress in Populus nigra L. Tree Physiol 31:1309–1318. doi:10.1093/treephys/tpr088

    Article  CAS  PubMed  Google Scholar 

  • Guerra F, Duplessis S, Kohler A, Martin F, Tapia J, Lebed P, Zamudio F, González E (2009) Gene expression analysis of Populus deltoides roots subjected to copper stress. Environ Exp Bot 67:335–344. doi:10.1016/j.envexpbot.2009.08.004

    Article  CAS  Google Scholar 

  • He J, Ma C, Ma Y, Li H, Kang J, Liu T, Polle A, Peng C, Luo Z-B (2013) Cadmium tolerance in six poplar species. Environ Sci Pollut Res 20:163–174. doi:10.1007/s11356-012-1008-8

    Article  CAS  Google Scholar 

  • Kavi Kishore PB, Sangam S, Amrutha RN, Laxmi PS, Naidu KR, Rao KRSS, Rao S, Reddy KJ, Theriappan P, Sreenivasulu N (2005) Regulation of proline biosynthesis, degradation, uptake and transport in higher plants: its implications in plant growth and abiotic stress tolerance. Curr Sci 88:424–438

    Google Scholar 

  • Kim Y-H, Lee H-S, Kwak S-S (2010) Differential responses of sweetpotato peroxidases to heavy metals. Chemosphere 81:79–85. doi:10.1016/j.chemosphere.2010.06.063

    Article  CAS  PubMed  Google Scholar 

  • Kopponen P, Utriainen M, Lukkari K, Suntioinen S, Kärenlampi L, Kärenlampi S (2001) Clonal differences in copper and zinc tolerance of birch in metal-supplemented soils. Environ Pollut 112:89–97. doi:10.1016/S0269-7491(00)00096-8

    Article  CAS  PubMed  Google Scholar 

  • Kučera T, Horáková H, Šonská A (2008) Toxic metal ions in photoautotrophic organisms. Photosynthetica 46:481–489. doi:10.1007/s11099-008-0083-z

    Article  Google Scholar 

  • Lagriffoul A, Mocquot B, Mench M, Vangronsveld J (1998) Cadmium toxicity effect on growth, mineral and chlorophyll contents and activities of stress related enzymes in young maize plants (Zea mays L.). Plant Soil 200:241–250

    Article  CAS  Google Scholar 

  • Laureysens I, Blust R, Temmerman L, Lemmens C, Ceulemans R (2004) Clonal variation in heavy metal accumulation and biomass production in a poplar coppice culture: I. Seasonal variation in leaf, wood and bark concentrations. Environ Pollut 131:485–494. doi:10.1016/j.envpol.2004.02.009

    Article  CAS  PubMed  Google Scholar 

  • Lequeux H, Hermans C, Lutts S, Verbruggen N (2010) Response to copper excess in Arabidopsis thaliana: impact on the root system architecture, hormone distribution, lignin accumulation and mineral profile. Plant Physiol Biochem 48:673–682. doi:10.1016/j.plaphy.2010.05.005

    Article  CAS  PubMed  Google Scholar 

  • Li SW, Leng Y, Feng L, Zeng XY (2014) Involvement of abscisic acid in regulating antioxidative defense systems and IAA-oxidase activity and improving adventitious rooting in mung bean [Vigna radiata (L.) Wilczek] seedlings under cadmium stress. Environ Sci Pollut Res 21:525–537. doi:10.1007/s11356-013-1942-0

    Article  CAS  Google Scholar 

  • Lichtenthaler HK, Wellburn AR (1983) Determination of total carotenoids and chlorophyll a and b of leaf extracts in different solvents. Biochem Soc Trans 11:591–592. doi:10.1042/bst0110591

    Article  CAS  Google Scholar 

  • Lidon FC, Henriques FS (1991) Limiting step on photosynthesis of rice plants treated with varying copper levels. J Plant Physiol 138:115–118. doi:10.1016/S0176-1617(11)80741-8

    Article  CAS  Google Scholar 

  • Lingua G, Franchin C, Todeschini V, Castiglione S, Biondi S, Burlando B, Parravicini V, Torrigiani P, Berta G (2008) Arbuscular mycorrhizal fungi differentially affect the response to high zinc concentrations of two registered poplar clones. Environ Pollut 153:137–147. doi:10.1016/j.envpol.2007.07.012

    Article  CAS  PubMed  Google Scholar 

  • Lohse G, Hedrich R (1992) Characterization of the plasma-membrane H+-ATPase from Vicia faba guard cells. Planta 188:206–214. doi:10.1007/BF00216815

    Article  CAS  PubMed  Google Scholar 

  • Maestri E, Marmiroli M, Visioli G, Marmiroli N (2010) Metal tolerance and hyperaccumulation: costs and trade-offs between traits and environment. Environ Exp Bot 68:1–13. doi:10.1016/j.envexpbot.2009.10.011

    Article  CAS  Google Scholar 

  • Maksymiec W (2007) Signaling response in plants to heavy metal stress. Acta Physiol Plant 29:177–187. doi:10.1007/s11738-007-0036-3

    Article  CAS  Google Scholar 

  • Mandal C, Ghosh N, Maiti S, Das K, Gupta S, Dey N, Adak MK (2013) Antioxidative responses of Salvinia (Salvinia natans Linn.) to aluminium stress and it’s modulation by polyamine. Physiol Mol Biol Plants 19:91–103. doi:10.1007/s12298-012-0144-4

    Article  CAS  PubMed  Google Scholar 

  • Marmiroli M, Imperiale D, Maestri E, Marmiroli N (2013) The response of Populus spp. to cadmium stress: chemical, morphological and proteomics study. Chemosphere 93:1333–1344. doi:10.1016/j.chemosphere.2013.07.065

    Article  CAS  PubMed  Google Scholar 

  • Marschner H (1995) Mineral nutrition of higher plants. Academic Press, London, pp 344–346

    Google Scholar 

  • Minocha R, Majumdar R, Minocha SC (2014) Polyamines and abiotic stress in plants: a complex relationship. Front Plant Sci 5:1–17. doi:10.3389/fpls.2014.00175

    Article  Google Scholar 

  • Mocquot B, Vangronsveld J, Clijsters H, Mench M (1996) Copper toxicity in young maize (Zea mays L.) plants: effects on growth, mineral and chlorophyll contents, and enzyme activities. Plant Soil 182:287–300

    Article  CAS  Google Scholar 

  • Mourato MP, Martins LL, Cuypers A (2009) Effect of copper on antioxidant enzyme activities and mineral nutrition of white lupin plants grown in nutrient solution. J Plant Nutr 32:1882–1900. doi:10.1080/01904160903242375

    Article  CAS  Google Scholar 

  • Murphy A, Eisinger W, Shaff J, Kochian L, Taiz L (1999) Early copper-induced leakage of K+ from arabidopsis seedlings is mediated by ion channels and coupled to citrate efflux. Plant Physiol 121:1375–1382. doi:10.1104/pp.121.4.1375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nezames CD, Ochoa V, Larsen PB (2013) Mutational loss of Arabidopsis SLOW WALKER2 results in reduced endogenous spermine concomitant with increased aluminum sensitivity. Funct Plant Biol 40:67–78. doi:10.1071/FP12234

    Article  CAS  Google Scholar 

  • Official Bulletin of the Republic of Serbia No. 52/2002

  • Ouzounidou G, Ilias I (2005) Hormone-induced protection of sunflower photosynthetic apparatus against copper toxicity. Biol Plant 49:223–228. doi:10.1007/s10535-005-3228-yID

    Article  CAS  Google Scholar 

  • Pal M, Szalai G, Janda T (2015) Speculation: polyamines are important in abiotic stress signaling. Plant Sci 237:16–23. doi:10.1016/j.plantsci.2015.05.003

    Article  CAS  PubMed  Google Scholar 

  • Pasternak T, Rudas V, Potters G, Jansen MAK (2005) Morphogenic effects of abiotic stress: reorientation of growth in Arabidopsis thaliana seedlings. Environ Exp Bot 53:299–314. doi:10.1016/j.envexpbot.2004.04.009

    Article  Google Scholar 

  • Pető A, Lehotai N, Lozano-Juste J, León J, Tari I, Erdei L, Kolbert Z (2011) Involvement of nitric oxide and auxin in signal transduction of copper-induced morphological responses in Arabidopsis seedlings. Ann Bot 108:449–457. doi:10.1093/aob/mcr176

    Article  PubMed  PubMed Central  Google Scholar 

  • Popko J, Hänsch R, Mendel R-R, Polle A, Teichmann T (2010) The role of abscisic acid and auxin in the response of poplar to abiotic stress. Plant Biol 12:242–258. doi:10.1111/j.1438-8677.2009.00305.x

    Article  CAS  PubMed  Google Scholar 

  • Pottosin I, Velarde-Buendía AM, Bose J, Zepeda-Jazo I, Shabala S, Dobrovinskaya O (2014) Cross-talk between reactive oxygen species and polyamines in regulation of ion transport across the plasma membrane: implications for plant adaptive responses. J Exp Bot 65:1271–1283. doi:10.1093/jxb/ert423

    Article  CAS  PubMed  Google Scholar 

  • Pulford ID, Watson C (2003) Phytoremediation of heavy metal-contaminated land by trees—a review. Environ Int 29:529–540. doi:10.1016/S0160-4120(02)00152-6

    Article  CAS  PubMed  Google Scholar 

  • Pulliainen TK, Wallin HC (1994) Determination of total phosphorus in foods by colorimetric measurement of phosphorus as molybdenum blue after dry-ashing: NMKL interlaboratory study. J AOAC Int 77:1557–1561

    CAS  PubMed  Google Scholar 

  • Rademacher W (2015) Plant growth regulators: backgrounds and uses in plant production. J Plant Growth Regul 34:845–872. doi:10.1007/s00344-015-9541-6

    Article  CAS  Google Scholar 

  • Saha J, Brauer EK, Sengupta A, Popescu SC, Gupta K, Gupta B (2015) Polyamines as redox homeostasis regulators during salt stress in plants. Front Environ Sci 3:21. doi:10.3389/fenvs.2015.00021

    Article  Google Scholar 

  • Scaramagli S, Franceschetti M, Michael AJ, Torrigiani P, Bagni N (1999) Polyamines and flowering: spermidine biosynthesis in the different whorls of developing flowers of Nicotiana tabacum L. Plant Biosyst 133:229–237. doi:10.1080/11263509909381554

    Article  Google Scholar 

  • Shabala S, White RG, Djordjevic MA, Ruan Y-L, Mathesius U (2016) Root-to-shoot signalling: integration of diverse molecules, pathways and functions. Funct Plant Biol 43:87–104. doi:10.1071/FP15252

    Article  CAS  Google Scholar 

  • Shevyakova NI, Cheremisina AI, Kuznetsov VV (2011) Phytoremediation potential of Amaranthus hybrids: antagonism between nickel and iron and chelating role of polyamines. Russ J Plant Physl 58:634–642. doi:10.1134/S1021443711040145

    Article  CAS  Google Scholar 

  • Shevyakova NI, Musatenko LI, Stetsenko LA, Vedenicheva NP, Voitenko LP, Sytnik KM, Kuznetsov VV (2013) Effects of abscisic acid on the contents of polyamines and proline in common bean plants under salt stress. Russ J Plant Physiol 60:200–211. doi:10.1134/S102144371301007x

    Article  CAS  Google Scholar 

  • Siripornadulsil S, Traina S, Verma S, Sayre R (2002) Molecular mechanisms of proline-mediated tolerance to toxic heavy metals in transgenic microalgae. Plant Cell 14:2837–2847. doi:10.1105/tpc.004853

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smulders MJM, Cottrell JE, Lefevre F, van der Schoot J, Arens P, Vosman B, Tabbener HE, Grassi F, Fossati T, Castiglione S, Krystufek V, Fluch S, Burg K, Vornam B, Pohl A, Gebhardt K, Alba N, Agundez D, Maestro C, Notivol E, Volosyanchuk R, Pospiskova M, Bordacs S, Bovenschen J, van Dam BC, Koelewijn HP, Halfmaerten D, Ivens B, van Slycken J, Broeck AV, Storme V, Boerjan W (2008) Structure of the genetic diversity in black poplar (Populus nigra L.) populations across European river systems: consequences for conservation and restoration. For Ecol Manag 255:1388–1399. doi:10.1016/j.foreco.2007.10.063

    Article  Google Scholar 

  • Song Y, Ci D, Tian M, Zhang D (2014) Comparison of the physiological effects and transcriptome responses of Populus simonii under different abiotic stresses. Plant Mol Biol 86:139–156. doi:10.1007/s11103-014-0218-5

    Article  CAS  PubMed  Google Scholar 

  • Szabados L, Savouré A (2010) Proline: a multifunctional amino acid. Trends Plant Sci 15:89–97. doi:10.1016/j.tplants.2009.11.009

    Article  CAS  PubMed  Google Scholar 

  • Tognetti VB, Mühlenbock P, Van Breusegem F (2012) Stress homeostasis—the redox and auxin perspective. Plant Cell Environ 35:321–333. doi:10.1111/j.1365-3040.2011.02324.x

    Article  CAS  PubMed  Google Scholar 

  • Trudić B, Kebert M, Popović BM, Štajner D, Orlović S, Galović V (2012) The level of oxidative stress in poplars due to heavy metal pollution in soil. Balt For 18:214–227

    Google Scholar 

  • Tsai C-J, Harding SA, Tschaplinski TJ, Lindroth RL, Yuan Y (2006) Genome-wide analysis of the structural genes regulating defense phenylpropanoid metabolism in Populus. New Phytol 172:47–62. doi:10.1186/1471-2164-11-150

    Article  CAS  PubMed  Google Scholar 

  • Van Assche F, Clijsters C (1990) Effects of metals on enzyme activity in plants. Plant Cell Environ 13:195–206. doi:10.1111/j.1365-3040.1990.tb01304.x

    Article  Google Scholar 

  • Vandecasteele B, Meers E, Vervaeke P, De Vos B, Quataert P, Tack FMG (2005) Growth and trace metal accumulation of two Salix clones on sediment-derived soils with increasing contamination levels. Chemosphere 58:995–1002. doi:10.1016/j.chemosphere.2004.09.062

    Article  CAS  PubMed  Google Scholar 

  • Velikova V, Yordanov I, Edreva A (2000) Oxidative stress and some antioxidant systems in acid rain-treated bean plants. Protective role of exogenous polyamines. Plant Sci 151:59–66. doi:10.1016/S0168-9452(99)00197-1

    Article  CAS  Google Scholar 

  • Velikova VB, Edreva AM, Tsonev TD, Jones HG (2007) Singlet oxygen quenching by phenylamides and their parent compounds. Z. Naturforsch C 62:833–838

    Article  CAS  PubMed  Google Scholar 

  • Vitti A, Nuzzazi M, Scopa A, Tataranni G, Tamburrino I, Sofo A (2014) Hormonal response and roots architecture in Arabidopsis thaliana subjected to heavy metals. Int J Plant Biol 5226:16–21. doi:10.4081/pb.2014.5226

    Google Scholar 

  • Von Caemmerer SV, Farquhar GD (1981) Some relationships between the biochemistry of photosynthesis and the gas exchange of leaves. Planta 153:376–387. doi:10.1007/BF00384257

    Article  Google Scholar 

  • Wang Y, WangY Kai W, Zhao B, Chen P, Sun L, Ji K, Li Q, Dai S, Sun Y, Wang Y, Pei Y, Leng P (2014) Transcriptional regulation of abscisic acid signal core components during cucumber seed germination and under Cu2þ, Zn2þ, NaCl and simulated acid rain stresses. Plant Physiol Biochem 76:67–76. doi:10.1016/j.plaphy.2014.01.003

    Article  CAS  PubMed  Google Scholar 

  • Wang R, Wang J, Zhao L, Yang S, Song Y (2015) Impact of heavy metal stresses on the growth and auxin homeostasis of Arabidopsis seedlings. Biometals 28:123–132. doi:10.1007/s10534-014-9808-6

    Article  PubMed  Google Scholar 

  • Wen X-P, Hiromichi I, Yusuke Ban Y, Matsuda N, Moriguchi T (2010) Spermidine levels are implicated in heavy metal tolerance in a spermidine synthase overexpressing transgenic European pear by exerting antioxidant activities. Transgenic Res 19:91–103. doi:10.1007/s11248-009-9296-6

    Article  CAS  PubMed  Google Scholar 

  • Wen X-P, Ban Y, Hiromichi I, Matsuda N, Kita M, Moriguchi T (2011) Antisense inhibition of a spermidine synthase gene highlights the role of polyamines for stress alleviation in pear shoots subjected to salinity and cadmium. Environ Exp Bot 72:157–166. doi:10.1016/j.envexpbot.2011.03.001

    Article  CAS  Google Scholar 

  • Wullschleger SD, Weston DJ, Davis JM (2009) Populus responses to edaphic and climatic cues: emerging evidence from systems biology research. Crit Rev Plant Sci 28:368–374. doi:10.1080/07352680903241246

    Article  CAS  Google Scholar 

  • Xiong L, Ishitani M, Lee H, Zhu J-K (2001) The Arabidopsis LOS5/ABA3 locus encodes a molybdenum cofactor sulfurase and modulates cold stress and osmotic stress responsive gene expression. Plant Cell 13:2063–2083. doi:10.1105/TPC.010101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu J, Yang L, Wang Z, Dong G, Huang J, Wang Y (2006) Toxicity of copper on rice growth and accumulation of copper in rice grain in copper contaminated soil. Chemosphere 62:602–607. doi:10.1016/j.chemosphere.2005.05.050

    Article  CAS  PubMed  Google Scholar 

  • Yamasaki H, Cohen MF (2006) NO signal at the crossroads: polyamine-induced nitric oxide synthesis in plants. Trends Plant Sci 11:522–524. doi:10.1016/j.tplants.2006.09.009

    Article  CAS  PubMed  Google Scholar 

  • Yruela I (2009) Copper in plants: acquisition, transport and interactions. Funct Plant Biol 36:409–430. doi:10.1071/FP08288

    Article  CAS  Google Scholar 

  • Yuan H-M, Xu H-H, Liu W-C, Lu Y-T (2013) Copper regulates primary root elongation through PIN1-mediated auxin redistribution. Plant Cell Physiol 54:766–778. doi:10.1093/pcp/pct030

    Article  CAS  PubMed  Google Scholar 

  • Yusuf M, Khan TA, Fariduddin Q (2016) Interaction of epibrassinolide and selenium ameliorates the excess copper in Brassica juncea through altered proline metabolism and antioxidants. Ecotoxicol Environ Safe 129:25–34. doi:10.1016/j.ecoenv.2016.03.00101

    Article  CAS  Google Scholar 

  • Zimmerlin A, Wojtaszek P, Bolwell GP (1994) Synthesis of dehydrogenation polymers of ferulic acid with high specificity by a purified cell-wall peroxidase from French bean (Phaseolus vulgaris L.). Biochem J 299:747–753. doi:10.1042/bj2990747

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This study was supported by STSM Grants from COST Action FP0903 “Climate Change and Forest Mitigation and Adaptation in a Polluted environment (MAFor)” and by COST Action FP1106 ‘Studying Tree Responses to extreme Events: a SynthesiS (STReESS)’ to MK. Additional support was provided by funds (Ricerca Fondamentale Orientata, RFO 2012) from the University of Bologna to SB and by the Ministry of Education, Science and Technological Development of the Republic of Serbia, Project No. III 43002—Biosensing technology and the global systems for continuous research and integrated management of ecosystems to SO and MK.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesca Rapparini.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kebert, M., Rapparini, F., Neri, L. et al. Copper-Induced Responses in Poplar Clones are Associated with Genotype- and Organ-Specific Changes in Peroxidase Activity and Proline, Polyamine, ABA, and IAA Levels. J Plant Growth Regul 36, 131–147 (2017). https://doi.org/10.1007/s00344-016-9626-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00344-016-9626-x

Keywords

Navigation