Skip to main content
Log in

Co-expression of MtDREB1C and RcXET Enhances Stress Tolerance of Transgenic China Rose (Rosa chinensis Jacq.)

  • Published:
Journal of Plant Growth Regulation Aims and scope Submit manuscript

Abstract

The xyloglucan endotransglycosylase gene RcXET of China Rose (Rosa chinensis Jacq.) and the MtDREB1C gene of Medicago truncatula Gaertn. were pyramided into the plant expression vector pBin438 and transformed into China Rose. Southern blot and Northern blot analyses showed that the heterologous gene MtDREB1C was integrated into the genome of surviving transgenic rose plants and expressed at different levels. Real-time PCR analysis demonstrated that robust expression of the congenetic gene RcXET was activated in the five surviving transgenic rose plants. The performance of the five transgenic lines under freezing and drought stress was superior to that of non-transformed controls. Thus, pyramiding of the genes MtDREB1C and RcXET in China Rose was more effective to enhance freezing and drought tolerance than untransformed controls. A positive correlation was observed between the expression of RcXET and the growth rate in contrast to the non-transgenic plants. The physiological assay showed that co-expression had greater effects on EC%, contents of proline, soluble sugar, photosynthesis rate, negative water potential, and turgor loss point than activities of POD and SOD under stress. The study also highlights the utility of a simple and rapid approach to express two or even more genes in one expression vector.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Akhtar M, Jaiswal A, Taj G et al (2012) DREB1/CBF transcription factors: their structure, function and role in abiotic stress tolerance in plants. J Genet 91(3):385–395

    Article  CAS  PubMed  Google Scholar 

  • Bartlett MK, Scoffoni C, Sack L (2012) The determinants of leaf turgor loss point and prediction of drought tolerance of species and biomes: a global meta-analysis. Ecol Lett 15:393–405

    Article  PubMed  Google Scholar 

  • Borriss R, Buettner K, Maentsaelae P (1990) Structure of the β-1,3-1,4-glucanase gene of Bacillus macerans: homologies to other β-glucanases. Mol Gen Genet 222:278–283

    Article  CAS  PubMed  Google Scholar 

  • Campbell P, Braam J (1999) In vitro activities of four xyloglucan endotransglycosylases from Arabidopsis. Plant J 8:371–382

    Article  Google Scholar 

  • Carins Murphy MR, Jordan GJ, Brodribb TJ (2012) Acclimation to humidity modifies the link between leaf size and the density of veins and stomata. Plant Cell Environ 37(1):124–131

    Article  Google Scholar 

  • Charity JA, Hughes P, Anderson MA, Bittisnich DJ, Whitecross M, Higgins TJV (2005) Pest and disease protection conferred by expression of barley beta-hordothionin and Nicotiana alata proteinase inhibitor genes in transgenic tobacco. Funct Plant Biol 32:35–44

    Article  CAS  Google Scholar 

  • Chen JR, Liu R, Wang HF (2006) Plant regeneration of transgenic China Rose (Rosa chinensis Jacq.) from organogenic callus. For Stud China 8:92–97

    Article  Google Scholar 

  • Chen JR, Lü JJ, Wang HF (2008) Rapid and efficient gene splicing using megaprimer-based protocol. Mol Biotechnol 40:224–230

    Article  CAS  PubMed  Google Scholar 

  • Chen JR, Lü JJ, Wang TX, Chen SY, Wang HF (2009a) Activation of a DRE-binding transcription factor from Medicago truncatula by deleting a Ser/Thr-rich region. In Vitro Cell Dev Biol-Plant 45:1–11

    Article  CAS  Google Scholar 

  • Chen JR, Xiong XY, Wang TX, Lü JJ, Chen SY, Wang HF (2009b) Rapid construction of a plant RNA interference expression vector for hairpin RNA-mediated targeting using a PCR-based method. DNA Cell Biol 28(12):605–613

    Article  CAS  PubMed  Google Scholar 

  • Chen JR, Lü JJ, Liu R, Xiong XY, Wang TX, Chen SY, Guo LB, Wang HF (2010) DREB1C from Medicago truncatula enhances freezing tolerance in transgenic M. truncatula and China Rose (Rosa chinensis Jacq.). Plant Growth Regul 60(3):199–211

    Article  CAS  Google Scholar 

  • Chen JR, Deng ZN, Chen YB, Hu BW, Lü JJ, Long YL, Xiong XY (2012) Construction of tandem repeats of DNA fragments by a polymerase chain reaction-based method. DNA Cell Biol 31(4):600–606

    Article  CAS  PubMed  Google Scholar 

  • Chen JR, Wu L, Hu BW, Yi X, Liu R, Deng ZN, Xiong XY (2014) The influence of plant growth regulators and light quality on somatic embryogenesis in China Rose (Rosa chinensis Jacq.). J Plant Growth Regul 33(2):295–304

    Article  CAS  Google Scholar 

  • Cho SK, Kim JE, Park J, Eom TJ, Kim WT (2006) Constitutive expression of abiotic stress-inducible hot pepper CaXTH3, which encodes a xyloglucan endotransglucosylase/hydrolase homolog, improves drought and salt tolerance in transgenic Arabidopsis plants. FEBS Lett 580:3136–3144

    Article  CAS  PubMed  Google Scholar 

  • Choi JY, Seo YS, Kim SJ, Kim WT, Shin JS (2011) Constitutive expression of CaXTH3, a hot pepper xyloglucan endotransglucosylase/hydrolase, enhanced tolerance to salt and drought stresses without phenotypic defects in tomato plants (Solanum lycopersicum cv. Dotaerang). Plant Cell Rep 30(5):867–877

    Article  CAS  PubMed  Google Scholar 

  • Cui J, Luo J, van der Werf W, Ma Y, Xia J (2011) Effect of pyramiding Bt and CpTI genes on resistance of cotton to Helicoverpa armigera (Lepidoptera:Noctuidae) under laboratory and field conditions. J Econ Entomol 104:673–684

    Article  CAS  PubMed  Google Scholar 

  • de Silva J, Jarman CD, Arrowsmith S, Stronach MS, Chengappa S, Sidebottom C, Reid JSG (1993) Molecular characterization of a xyloglucan-specific endo-(1-4)-β-d-glucanase (xyloglucan endotransglycosylase) from nasturtium seeds. Plant J 3:701–711

    Article  PubMed  Google Scholar 

  • Dunse KM, Stevens JA, Lay FT et al (2010) Coexpression of potato type I and II proteinase inhibitors gives cotton plants protection against insect damage in the field. Proc Natl Acad Sci USA 107:15011–15015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Faize M, Faize L, Burgos L (2010) Using quantitative real-time PCR to detect chimeras in transgenic tobacco and apricot and to monitor their dissociation. BMC Biotechnol 10(1):53

    Article  PubMed  PubMed Central  Google Scholar 

  • Geisler M (2010) Transcription and signaling factors in the drought response regulatory network. In: Matthew AJ, Andrew JW (eds) Genes for plant abiotic stress. Wiley, Singapore, p 60

    Google Scholar 

  • Gilmour SJ, Zarka DG, Stockinger EJ, Salazar MP, Houghton JM, Thomashow MF (1998) Low temperature regulation of the Arabidopsis CBF family of AP2 transcriptional activators as an early step in cold-induced COR gene expression. Plant J 16:433–442

    Article  CAS  PubMed  Google Scholar 

  • Golmirizaie A, Zhang DP, Nopo L et al (1997) Enhanced resistance to West Indian sweet potato weevil (Euscepes postfaciatus) in transgenic ‘Jewel’ sweet potato with cowpea trypsin inhibitor and snowdrop lectin. Hortic Sci 32:435

    Google Scholar 

  • Gutha LR, Reddy AR (2008) Rice DREB1B promoter shows distinct stress-specific responses, and the over-expression of cDNA in tobacco confers improved abiotic and biotic stress tolerance. Plant Mol Biol 68:533–555

    Article  CAS  PubMed  Google Scholar 

  • Han Y, Wang W, Sun J, Wang RR, Zhang X, Han F, Hu Z (2013) Populus euphratica XTH overexpression enhances salinity tolerance by the development of leaf succulence in transgenic tobacco plants. J Exp Bot 64(14):4225–4238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hsieh TH, Lee JT, Yang PT, Chiu LH, Charng YY, Wang YC, Chan MT (2002) Heterology expression of the Arabidopsis C-repeat/dehydration response element binding factor 1 gene confers elevated tolerance to chilling and oxidative stresses in transgenic tomato. Plant Physiol 129(3):1086–1094

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jaglo-Ottosen KR, Gilmour SJ, Zarka DG, Schabenberger O, Thomashow MF (1998) Arabidopsis CBF1 over-expression induces COR genes and enhances freezing tolerance. Sci 280:104–106

    Article  CAS  Google Scholar 

  • Johansson P, Brumer H, Baumann MJ, Kallas AM, Henriksson H, Dennan SE, Teeri TT, Jones A (2004) Crystal structures of a poplar xyloglucan endotransglycosylase reveal details of transglycosylation acceptor binding. Plant Cell Online 16(4):874–886

    Article  CAS  Google Scholar 

  • Kasuga M, Liu Q, Miura S, Yamaguchi-Shinozaki K, Shinozaki K (1999) Improving drought, salt and freezing tolerance by gene transfer of a single stress-inducible transcription factor. Nat Biotech 17:287–291

    Article  CAS  Google Scholar 

  • Kim CK, Chung JD, Park SH, Burrell AM, Kamo KK, Byrne DH (2004) Agrobacterium tumefaciens-mediated transformation of Rosa hybrida using the green fluorescent protein (GFP) gene. Plant Cell Tissue Org Cult 78:107–111

    Article  CAS  Google Scholar 

  • Liu Q, Kasuga M, Sakuma Y, Abe H, Miura S, Yamaguchi-Shinozaki K, Shinozaki K (1998) Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought- and low-temperature-responsive gene expression, respectively, in Arabidopsis. Plant Cell 10:1391–1406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Medina J, Catalá R, Salinas J (2001) Developmental and stress regulation of RCI2A and RCI2B, two cold-inducible genes of Arabidopsis encoding highly conserved hydrophobic proteins. Plant Physiol 125:1655–1656

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Plant Physiol 15:473–497

    Article  CAS  Google Scholar 

  • Novillo F, Alonso JM, Ecker JR, Salinas J (2004) CBF2/DREB1C is a negative regulator of CBF1/DREB1B and CBF3/DREB1A expression and plays a central role in stress tolerance in Arabidopsis. Proc Natl Acad Sci USA 101(11):3985–3990

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Okazawa K, Sato Y, Nakagawa T, Asada K, Kato I, Tomita E, Nishitani K (1993) Molecular cloning and cDNA sequencing of endoxyloglucan transferase, a novel class of glycosyltransferase that mediates molecular grafting between matrix polysaccharides in plant cell walls. J Biol Chem 268:25364–25368

    CAS  PubMed  Google Scholar 

  • Potter I, Fry S (1993) Xyloglucan endotransglycosylase activity in pea internodes. Plant Physiol 103:235–241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Purugganan MM, Braam J, Fry SC (1997) The Arabidopsis TCH4 xyloglucan endotransglycosylase. Substrate specificity, pH optimum, and cold tolerance. Plant Physiol 115:181–190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ravikumar G, Manimaran P, Voleti SR, Subrahmanyam D, Sundaram RM, Bansal KC, Viraktamath BC, Balachandran SM (2014) Stress-inducible expression of AtDREB1A transcription factor greatly improves drought stress tolerance in transgenic indica rice. Transgenic Res 23(3):421–439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Santamaria ME, Cambra I, Martinez M, Pozancos C, González-Melendi P, Grbic V, Castañera P, Ortego F, Diaz I (2012) Gene pyramiding of peptidase inhibitors enhances plant resistance to the spider mite Tetranychus urticae. PLoS One 7(8):e43011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Senthilkumar R, Cheng CP, Yeh KW (2010) Genetically pyramiding protease-inhibitor genes for dual broad-spectrum resistance against insect and phytopathogens in transgenic tobacco. Plant Biotech J 8:65–75

    Article  CAS  Google Scholar 

  • Shen YG, Zhang WK, Yan DQ, Du BX, Zhang JS, Liu Q, Chen SY (2003) Characterization of a DRE-binding transcription factor from a halophyte Atriplex hortensis. Theor Appl Genet 107:155–161

    CAS  PubMed  Google Scholar 

  • Shinozaki K, Yamaguchi-Shinozaki K (2000) Molecular responses to dehydration and low temperature: differences and cross-talk between two stress signaling pathways. Curr Opin Plant Biol 3:217–223

    Article  CAS  PubMed  Google Scholar 

  • Smith RC, Fry SC (1991) Endotransglycosylation of xyloglucans in plant cell suspension cultures. Biochem J 279:529–535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stockinger EJ, Gilmour SJ, Thomashow MF (1997) Arabidopsis thaliana CBF1 encodes an AP2 domain-containing transcriptional activator that binds to the C-repeat/DRE a cis-acting DNA regulatory element that stimulates transcription in response to low temperature and water deficit. Proc Natl Acad Sci USA 94:1035–1040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thompson JE, Fry SC (2001) Restructuring of wall-bound xyloglucan by transglycosylation in living plant cells. Plant J 26(1):23–34

    Article  CAS  PubMed  Google Scholar 

  • Vergne P, Maene M, Gabant G, Chauvet A, Debener T, Bendahmane M (2010) Somatic embryogenesis and transformation of the diploid Rosa chinensis cv Old Blush. Plant Cell Tissue Organ Cult 100:73–81

    Article  Google Scholar 

  • Wang JJ, Mo WP, Jia WS, Liu GJ (2013) The relationship of grape leaf stomatal conductance and water potential with leaf position under drought conditions. Sci Agric Sinica 46(10):2151–2158

    Google Scholar 

  • Xu W, Purugganan MM, Polisensky DH, Antosiewicz DM, Fry SC, Braam J (1995) Arabidopsis TCH4, regulated by hormones and the environment, encodes a xyloglucan endotransglycosylase. Plant Cell 7:1555–1567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu W, Campbell P, Vargheese AK, Braam J (1996) The Arabidopsis XET-related gene family: environmental and hormonal regulation of expression. Plant J 9(6):879–889

    Article  CAS  PubMed  Google Scholar 

  • Yamaguchi-Shinozaki K, Shinozaki K (1994) A novel cis-acting element in an Arabidopsis gene is involved in responsiveness to drought, low-temperature, or high-salt stress. Plant Cell 6:251–264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang W, Liu XD, Chi XJ, Wu CA, Li YZ, Song LL, Liu XM, Wang YF, Wang FW, Zhang C, Liu Y, Zong JM, Li HY (2011) Dwarf apple MbDREB1 enhances plant tolerance to low temperature, drought, and salt stress via both ABA-dependent and ABA-independent pathways. Planta 233:219–229

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant Nos. 31071826, 31272208), the China Postdoctoral Science Foundation (Grant Nos. 20100471215 and 201104473), and Hunan innovation fund for graduates (CX2015B271). English-language editing was supplied by Edanz Editing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xing-Yao Xiong.

Additional information

Ji-Ren Chen, Yan-Bin Chen, and Monika Ziemiańska have contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 530 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, JR., Chen, YB., Ziemiańska, M. et al. Co-expression of MtDREB1C and RcXET Enhances Stress Tolerance of Transgenic China Rose (Rosa chinensis Jacq.). J Plant Growth Regul 35, 586–599 (2016). https://doi.org/10.1007/s00344-015-9564-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00344-015-9564-z

Keywords

Navigation