Skip to main content

Advertisement

Log in

Promotion of Peanut Growth by Co-inoculation with Selected Strains of Bradyrhizobium and Azospirillum

  • Published:
Journal of Plant Growth Regulation Aims and scope Submit manuscript

Abstract

The ability of inoculated rhizobial strains to increase root nodulation of host legumes often depends on their competitiveness with existing native soil strains. Results of studies to date on rhizobial inoculation for improvement of peanut (Arachis hypogaea L.) production in Argentina have been inconsistent and controversial. In many cases, nodulation and yield of peanut crops have been increased by inoculation of specific rhizobial strains. Native peanut-nodulating strains are generally present in soils of agricultural areas, but their growth-promoting effect is often lower than that of inoculated strains. Many species of the genus Bradyrhizobium interact in a host-specific manner with legume species and form nitrogen-fixing root nodules. Other free-living rhizobacteria such as species of the genus Azospirillum are facultatively capable of interacting with legume roots and promoting plant growth. We evaluated and compared the effects of various single inoculation and co-inoculation treatments on peanut growth parameters in greenhouse and field experiments. In the greenhouse studies, co-inoculation with various Bradyrhizobium strains (native 15A and PC34, and recommended peanut inoculant C145), and Azospirillum brasilense strain Az39 generally resulted in increases in the measured parameters. The growth-promoting effect of 15A was similar to or higher than that of C145. In the field studies, 15A-Az39 co-inoculation had a greater promoting effect on measured growth parameters than did C145-Az39 co-inoculation. Our findings indicate that careful selection of native rhizobacterial strains adapted to peanut soils is useful in strategies for growth promotion, and that 15A in particular is a promising candidate for future inoculant formulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ahemad M, Khan MS, Zaidi A, Wani PA (2009) Remediation of herbicides contaminated soil using microbes. In: Khan MS, Zaidi A, Musarrat J (eds) Microbes in sustainable agriculture. Nova Science Publishers Inc, New York, pp 261–284

    Google Scholar 

  • Bashan Y, de-Bashan L (2010) How the plant growth-promoting bacterium Azospirillum promotes plant growth a critical assessment. Adv Agron 108:77–136

    Article  CAS  Google Scholar 

  • Bogino P, Banchio E, Rinaudi L, Cerioni G, Bonfiglio C, Giordano W (2006) Peanut (Arachis hypogaea L.) response to inoculation with Bradyrhizobium sp. in soils of Argentina. Ann Appl Biol 148:207–212

    Article  Google Scholar 

  • Bogino P, Banchio E, Bonfiglio C, Giordano W (2008) Competitiveness of a Bradyrhizobium sp. strain in soils containing indigenous rhizobia. Curr Microbiol 56:66–72

    Article  CAS  PubMed  Google Scholar 

  • Bogino P, Banchio E, Giordano W (2010) Molecular diversity of peanut-nodulating rhizobia in soils of Argentina. J Basic Microbiol 50:27–279

    Article  Google Scholar 

  • Boogerd FC, van Rossum D (1997) Nodulation of groundnut by Bradyrhizobium: a simple infection process by crack entry. FEMS Microbiol Rev 21:5–27

    Article  CAS  Google Scholar 

  • Bottomley PJ (1992) Ecology of Bradyrhizobium and Rhizobium. In: Stacey G, Burris RH, Evans HJ (eds) Biological nitrogen fixation. Chapman, New York, pp 293–348

    Google Scholar 

  • Burdman S, Volpin H, Kigel J, Kapulnik Y, Okon Y (1996) Promotion of nod gene inducers and nodulation in common bean (Phaseolus vulgaris) roots inoculated with Azospirillum brasilense Cd. Appl Environ Microbiol 62:3030–3033

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cassán F, Maiale S, Masciarelli O, Vidal A, Luna V, Ruiz O (2009) Cadaverine production by Azospirillum brasilense and its possible role in plant growth promotion and osmotic stress mitigation. Eur J Soil Biol 45:12–19

    Article  Google Scholar 

  • Cassán FD, Okon Y, Creus CM (2015) Handbook for Azospirillum. Springer, Switzerland. doi:10.1007/978-3-319-06542-7

    Google Scholar 

  • Cholaki L, Giayetto O, Neuman E, Cavaignac S (1983) Respuesta del maní (Arachis hypogaea L.) a la inoculación al suelo con Rhizobium spp. Revista UNRC 3:173–179

    Google Scholar 

  • Dardanelli MS, Rodríguez Navarro DN, Megías M, Okon Y (2008) Influencia de la coinoculación Azospirillum-rizobios sobre el crecimiento y la fijación de N de leguminosas de interés agronómico. In: Cassán F, García Salamone I (eds) Azospirillum sp.: cell physiology, plant interactions and agronomic research in Argentina. Asociación Argentina de Microbiología, Buenos Aires, pp 141–151

    Google Scholar 

  • Dobbelaere S, Croonenborghs A, Thys A, Ptacek D, Vanderleyden J, Dutto P, Labandera-Gonzalez C, Caballero-Mellado J, Aguirre JF, Kapulnik Y, Brener S, Burdman S, Kadouri D, Sarig S, Okon Y (2001) Responses of agronomically important crops to inoculation with Azospirillum. Aust J Plant Physiol 28:871–879

    Google Scholar 

  • Dowling DN, Broughton WJ (1986) Competition for nodulation of legumes. Annu Rev Microbiol 40:131–157

    Article  CAS  PubMed  Google Scholar 

  • Doyle J, Luckow M (2003) The rest of the iceberg Legume diversity and evolution in a phylogenetic context. Plant Physiol 131:900–910

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fabra A, Castro S, Taurian T, Angelini J, Ibañez F, Dardanelli M, Tonelli M, Bianucci E, Valetti L (2010) Interaction among Arachis hypogaea L. (peanut) and beneficial soil microorganisms: how much is it known? Crit Rev Microbiol 36:179–194

    Article  CAS  PubMed  Google Scholar 

  • Figueredo MS, Tonelli ML, Taurian T, Angelini J, Ibañez F, Valetti L, Muñoz V, Anzuay MS, Ludueña L, Fabra A (2014) Interrelationships between Bacillus sp. CHEP5 and Bradyrhizobium sp. SEMIA6144 in the induced systemic resistance against Sclerotium rolfsii and symbiosis on peanut plants. J Biosci 39:877–885

    Article  CAS  PubMed  Google Scholar 

  • Giayetto O, Cerioni GA, Amin MS (1999) Use of asymptotic model to obtain optimum plant density in peanut (Arachis hypogaea L.). J Peanut Sci 32:1–6

    Google Scholar 

  • Lavin M, Pennington R, Klitgaard B, Sprent J, Lima H, Gasson P (2001) The dalbergioid legumes. (Fabaceae), delimitation of a pantropical monophyletic clade. Am J Bot 88:503–533

    Article  CAS  PubMed  Google Scholar 

  • Lugtenberg B, Kamilova F (2009) Plant-growth-promoting rhizobacteria. Ann Rev Microbiol 63:541–556

    Article  CAS  Google Scholar 

  • Michelena V, Mata A, Pino F (1996) Memorias de la XVIII Reunión Latinoamericana de Rhizobiología. Santa Cruz de la Sierra, Bolivia

    Google Scholar 

  • Nievas F, Bogino P, Nocelli N, Giordano W (2012) Genotypic analysis of isolated peanut-nodulating rhizobial strains reveals differences among populations obtained from soils with different cropping histories. Appl Soil Ecol 53:74–82

    Article  Google Scholar 

  • Pérez-Montaño F, Alías-Villegas C, Bellogín RA, del Cerro P, Espuny MR, Jiménez-Guerrero I, López-Baena FJ, Ollero FJ, Cubo T (2014) Plant growth promotion in cereal and leguminous agricultural important plants: from microorganism capacities to crop production. Microbiol Res 169:325–336

    Article  PubMed  Google Scholar 

  • Podile AR, Kishore GK (2006) Plant growth-promoting rhizabacteria. In: Gnanamanickam SS (ed) Plant-associated bacteria. Springer, The Netherlands, pp 195–230

    Chapter  Google Scholar 

  • Rivera D, Revale S, Molina R, Gualpa J, Puente M, Maroniche G, Paris G, Baker D, Clavijo B, McLay K, Spaepen S, Perticari A, Vazquez M, Wisniewski-Dyé F, Watkins C, Martínez-Abarca F, Vanderleyden J, Cassán F (2014) Complete genome sequence of the model rhizosphere strain Azospirillum brasilense Az39, successfully applied in agriculture. Genome Announc 2(4):e00683-14. doi:10.1128/genomeA.00683-14

    Article  PubMed  PubMed Central  Google Scholar 

  • SAGPyA (2008) Secretaría de agricultura, ganadería, pesca y alimentos http://www.sagpyamecon.gov.ar

  • Sanchez AC, Gutierrez RT, Santana RC, Urrutia AR, Fauvart M, Michiels J, Vanderleyden J (2014) Effects of co-inoculation of native Rhizobium and Pseudomonas strains on growth parameters and yield of two contrasting L. genotypes under Cuban soil conditions. Eur J Soil Biol 62:105–112

    Article  Google Scholar 

  • Singh CS, Pandey VC, Singh DP (2011) Efficient soil microorganisms: a new dimension for sustainable agriculture and environmental development. Agric Ecosyst Environ 140:339–353

    Article  Google Scholar 

  • Vessey JK (2003) Plant growth promoting rhizobacteria as biofertilizers. Plant Soil 255:571–586

    Article  CAS  Google Scholar 

  • Vicario JC (2015) Estudios fisiológicos, bioquímicos y moleculares en rizobios: aplicacíon como biofertilizantes para la agricultura sustentable de maní. Universidad Nacional de Río Cuarto, Tesis Doctoral

    Google Scholar 

  • Vicario JC, Dardanelli MS, Giordano W (2015) Swimming and swarming motility properties of peanut-nodulating rhizobia. FEMS Microbiol Lett 362:1–6

    Article  PubMed  Google Scholar 

  • Vincent J (1970) A manual for the practical study of root nodule bacteria. In International biological programme, vol 15. Blackwel Scientific Publication, Oxford

    Google Scholar 

Download references

Acknowledgments

This study was supported by grants from the Secretaría de Ciencia y Técnica de la Universidad Nacional de Río Cuarto, the Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), and the Agencia Nacional de Promoción Científica y Tecnológica (ANPCyT), Argentina. JCV and EDP hold a CONICET fellowship. MSD and WG are Career Members of CONICET. The authors are grateful to Guillermo Cerioni for assistance in the field experiments, to Mr. H. Primo for making his farm in Dalmacio Vélez Sarsfield available for the experiments, and to Dr. S. Anderson for English editing of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Walter Giordano.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vicario, J.C., Primo, E.D., Dardanelli, M.S. et al. Promotion of Peanut Growth by Co-inoculation with Selected Strains of Bradyrhizobium and Azospirillum . J Plant Growth Regul 35, 413–419 (2016). https://doi.org/10.1007/s00344-015-9547-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00344-015-9547-0

Keywords

Navigation