Skip to main content
Log in

Overlap between Signaling Pathways Responsive to Xanthomonas oryzae pv. oryzae Infection and Drought Stress in Rice Introgression Line Revealed by RNA-Seq

  • Published:
Journal of Plant Growth Regulation Aims and scope Submit manuscript

Abstract

Rice bacterial blight, caused by Xanthomonas oryzae pv. oryzae (Xoo), and drought stress are common reducers of rice yields in some regions of Asia and Africa. The rice introgression line H471 exhibits broad-spectrum dual resistance to Xoo and drought tolerance. To obtain a deeper understanding of crosstalk between signaling pathways in response to Xoo infection and drought stress, whole-genome transcriptome analyses of H471 and its recurrent parent Huang-Hua-Zhan (HHZ) were performed. A set of significant KEGG pathways involved in dual stress resistance were inferred by comparing H471 and HHZ samples under Xoo infection and drought stress using the gene set enrichment analysis method. We detected 178 genes that were differentially expressed in H471 common in response to the dual stresses when compared with HHZ, including genes for signaling perception and transduction, transcription regulation, and stress response. Putative common co-regulatory networks were constructed using 39 of the differentially expressed genes from the three different functional groups. These results will be a valuable source of information for further investigations on crosstalk between signaling pathways responsive to Xoo infection and drought stress in rice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Adie BAT, Perez-Perez J, Perez-Perez MM, Godoy M, Sanchez-Serrano JJ, Schmelz EA, Solano R (2007) ABA is an essential signal for plant resistance to pathogens affecting JA biosynthesis and the activation of defenses in Arabidopsis. Plant Cell 19:1665–1681

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anjum SA, Wang LC, Farooq M, Hussain M, Xue LL, Zou CM (2011) Brassinolide application improves the drought tolerance in maize through modulation of enzymatic antioxidants and leaf gas exchange. J Agron Crop Sci 197:177–185

    Article  CAS  Google Scholar 

  • Asano T, Hayashi N, Kobayashi M, Aoki N, Miyao A, Mitsuhara I, Ichikawa H, Komatsu S, Hirochika H, Kikuchi S, Ohsugi R (2012) A rice calcium-dependent protein kinase OsCPK12 oppositely modulates salt-stress tolerance and blast disease resistance. Plant J 69:26–36

    Article  CAS  PubMed  Google Scholar 

  • Atkinson NJ, Urwin PE (2012) The interaction of plant biotic and abiotic stresses: from genes to the field. J Exp Bot 63:3523–3543

    Article  CAS  PubMed  Google Scholar 

  • Bailey TL, Boden M, Buske FA, Frith M, Grant CE, Clementi L, Ren J, Li WW, Noble WS (2009) MEME SUITE: tools for motif discovery and searching. Nucleic Acids Res 37:W202–W208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cao P, Jung KH, Choi D, Hwang D, Zhu J, Ronald PC (2012) The Rice Oligonucleotide Array Database: an atlas of rice gene expression. Rice 5:17

    Article  PubMed  Google Scholar 

  • Chu Z, Ouyang Y, Zhang J, Yang H, Wang S (2004) Genome-wide analysis of defense-responsive genes in bacterial blight resistance of rice mediated by the recessive R gene xa13. Mol Genet Genomics 271:111–120

    Article  CAS  PubMed  Google Scholar 

  • Cle C, Hill LM, Niggeweg R, Martin CR, Guisez Y, Prinsen E, Jansen MA (2008) Modulation of chlorogenic acid biosynthesis in Solanum lycopersicum; consequences for phenolic accumulation and UV-tolerance. Phytochemistry 69:2149–2156

    Article  CAS  PubMed  Google Scholar 

  • Dixit S, Singh A, Kumar A (2014) Rice breeding for high grain yield under drought: a strategic solution to a complex problem. Int J Agron 2014:15

    Article  Google Scholar 

  • Du Z, Zhou X, Ling Y, Zhang Z, Su Z (2010) agriGO: a GO analysis toolkit for the agricultural community. Nucleic Acids Res 38:W64–W70

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dubos C, Stracke R, Grotewold E, Weisshaar B, Martin C, Lepiniec L (2010) MYB transcription factors in Arabidopsis. Trends Plant Sci 15:573–581

    Article  CAS  PubMed  Google Scholar 

  • Fraser CM, Chapple C (2011) The phenylpropanoid pathway in Arabidopsis. The Arabidopsis Book 9:e0152

    Article  PubMed  PubMed Central  Google Scholar 

  • Grewal RK, Gupta S, Das S (2012) Xanthomonas oryzae pv oryzae triggers immediate transcriptomic modulations in rice. BMC Genom 13:49

    Article  CAS  Google Scholar 

  • Gu K, Yang B, Tian D, Wu L, Wang D, Sreekala C, Yang F, Chu Z, Wang GL, White FF, Yin Z (2005) R gene expression induced by a type-III effector triggers disease resistance in rice. Nature 435:1122–1125

    Article  CAS  PubMed  Google Scholar 

  • Huang L, Zhang F, Zhang F, Wang W, Zhou Y, Fu B, Li Z (2014) Comparative transcriptome sequencing of tolerant rice introgression line and its parents in response to drought stress. BMC Genom 15:1026

    Article  Google Scholar 

  • Jones JD, Dangl JL (2006) The plant immune system. Nature 444:323–329

    Article  CAS  PubMed  Google Scholar 

  • Kauffman HE, Reddy APK, Hsieh SPY, Merca SD (1973) A improved technique for evaluation of resistance of rice varieties to Xanthomonas oryzea. Plant Dis Rep 57:537–541

    Google Scholar 

  • Kawahara Y, de la Bastide M, Hamilton JP, Kanamori H, McCombie WR, Ouyang S, Schwartz DC, Tanaka T, Wu J, Zhou S, Childs KL, Davidson RM, Lin H, Quesada-Ocampo L, Vaillancourt B, Sakai H, Lee SS, Kim J, Numa H, Itoh T, Buell CR, Matsumoto T (2013) Improvement of the Oryza sativa Nipponbare reference genome using next generation sequence and optical map data. Rice 6:4

    Article  PubMed  Google Scholar 

  • Khush GS (2005) What it will take to feed 5.0 billion rice consumers in 2030. Plant Mol Biol 59:1–6

    Article  CAS  PubMed  Google Scholar 

  • Krasensky J, Jonak C (2012) Drought, salt, and temperature stress-induced metabolic rearrangements and regulatory networks. J Exp Bot 63:1593–1608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krishna P (2003) Brassinosteroid-mediated stress responses. J Plant Growth Regul 22:289–297

    Article  CAS  PubMed  Google Scholar 

  • Lafitte HR, Li ZK, Vijayakumar CHM, Gao YM, Shi Y, Xu JL, Fu BY, Yu SB, Ali AJ, Domingo J, Maghirang R, Torres R, Mackill D (2006) Improvement of rice drought tolerance through backcross breeding: evaluation of donors and selection in drought nurseries. Field Crops Res 97:77–86

    Article  Google Scholar 

  • Li KR, Feng CH (2011) Effects of brassinolide on drought resistance of Xanthoceras sorbifolia seedlings under water stress. Acta Physiol Plant 33:1293–1300

    Article  CAS  Google Scholar 

  • Li ZK, Fu BY, Gao YM, Xu JL, Ali J, Lafitte HR, Jiang YZ, Domingo Rey J, Vijayakumar CHM, Maghirang R, Zheng TQ, Zhu LH (2005) Genome-wide introgression lines and their use in genetic and molecular dissection of complex phenotypes in rice (Oryza sativa L.). Plant Mol Biol 59:33–52

    Article  CAS  PubMed  Google Scholar 

  • Liu W, Liu J, Triplett L, Leach JE, Wang GL (2014) Novel insights into rice innate immunity against bacterial and fungal pathogens. Annu Rev Phytopathol 52:213–241

    Article  CAS  PubMed  Google Scholar 

  • Luo W, Brouwer C (2013) Pathview: an R/Bioconductor package for pathway-based data integration and visualization. Bioinformatics 29:1830–1831

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luo W, Friedman MS, Shedden K, Hankenson KD, Woolf PJ (2009) GAGE: generally applicable gene set enrichment for pathway analysis. BMC Bioinf 10:161

    Article  Google Scholar 

  • Meng LJ, Lin XY, Wang JM, Chen K, Cui YR, Xu JL, Li ZK (2013) Simultaneous improvement in cold tolerance and yield of temperate japonica rice (Oryza sativa L.) by introgression breeding. Plant Breeding 132:604–612

    Article  CAS  Google Scholar 

  • Mew TW (1987) Current status and future prospects of research on bacterial blight of rice. Ann Rev Phytopathol 25:359–382

    Article  Google Scholar 

  • Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B (2008) Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods 5:621–628

    Article  CAS  PubMed  Google Scholar 

  • Moumeni A, Satoh K, Kondoh H, Asano T, Hosaka A, Venuprasad R, Serraj R, Kumar A, Leung H, Kikuchi S (2011) Comparative analysis of root transcriptome profiles of two pairs of drought-tolerant and susceptible rice near-isogenic lines under different drought stress. BMC Plant Biol 11:174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Noctor G, Arisi AM, Jouanin L, Kunert KJ, Rennenberg H, Foyer CH (1998) Glutathione: biosynthesis, metabolism and relationship to stress tolerance explored in transformed plants. J Exp Bot 49:623–647

    CAS  Google Scholar 

  • Ogawa T (1993) Methods and strategy for monitoring race distribution and identification of resistance genes to bacterial leaf blight (Xanthomonas campestris pv. oryzae) in rice. Jarq-Jpn Agr Res Q 27:71–80

    Google Scholar 

  • Pinheiro C, Chaves MM (2011) Photosynthesis and drought: can we make metabolic connections from available data? J Exp Bot 62:869–882

    Article  CAS  PubMed  Google Scholar 

  • Price AH, Cairns JE, Horton P, Jones HG, Griffiths H (2002) Linking drought-resistance mechanisms to drought avoidance in upland rice using a QTL approach: progress and new opportunities to integrate stomatal and mesophyll responses. J Exp Bot 53:989–1004

    Article  CAS  PubMed  Google Scholar 

  • Rockstrom J, Falkenmark M (2000) Semiarid crop production from a hydrological perspective: gap between potential and actual yields. Crit Rev Plant Sci 19:319–346

    Article  Google Scholar 

  • Sasse JM (2003) Physiological actions of brassinosteroids: an update. J Plant Growth Regul 22:276–288

    Article  CAS  PubMed  Google Scholar 

  • Schweighofer A, Hirt H, Meskiene I (2004) Plant PP2C phosphatases: emerging functions in stress signaling. Trends Plant Sci 9:236–243

    Article  CAS  PubMed  Google Scholar 

  • Sharoni AM, Nuruzzaman M, Satoh K, Moumeni A, Attia K, Venuprasad R, Serraj R, Kumar A, Leung H, Islam AK, Kikuchi S (2012) Comparative transcriptome analysis of AP2/EREBP gene family under normal and hormone treatments, and under two drought stresses in NILs setup by Aday Selection and IR64. Mol Genet Genomics 287:1–19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Swarbrick PJ, Huang K, Liu G, Slate J, Press MC, Scholes JD (2008) Global patterns of gene expression in rice cultivars undergoing a susceptible or resistant interaction with the parasitic plant Striga hermonthica. New Phytol 179:515–529

    Article  CAS  PubMed  Google Scholar 

  • Tao Z, Liu H, Qiu D, Zhou Y, Li X, Xu C, Wang S (2009) A pair of allelic WRKY genes play opposite roles in rice-bacteria interactions. Plant Physiol 151:936–948

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tena G, Boudsocq M, Sheen J (2011) Protein kinase signaling networks in plant innate immunity. Curr Opin Plant Biol 14:519–529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trapnell C, Pachter L, Salzberg SL (2009) TopHat: discovering splice junctions with RNA-Seq. Bioinformatics 25:1105–1111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trapnell C, Williams BA, Pertea G, Mortazavi A, Kwan G, van Baren MJ, Salzberg SL, Wold BJ, Pachter L (2010) Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat Biotechnol 28:511–515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Verdier V, Vera Cruz C, Leach JE (2012) Controlling rice bacterial blight in Africa: needs and prospects. J Biotechnol 159:320–328

    Article  CAS  PubMed  Google Scholar 

  • Wang W, Vinocur B, Altman A (2003) Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. Planta 218:1–14

    Article  CAS  PubMed  Google Scholar 

  • Wang D, Pan Y, Zhao X, Zhu L, Fu B, Li Z (2011) Genome-wide temporal-spatial gene expression profiling of drought responsiveness in rice. BMC Genom 12:149

    Article  Google Scholar 

  • Wasilewska A, Vlad F, Sirichandra C, Redko Y, Jammes F, Valon C, Frei dit Frey N, Leung J (2008) An update on abscisic acid signaling in plants and more. Mol Plant 1:198–217

    Article  CAS  PubMed  Google Scholar 

  • Xiong L, Yang Y (2003) Disease resistance and abiotic stress tolerance in rice are inversely modulated by an abscisic acid-inducible mitogen-activated protein kinase. Plant Cell 15:745–759

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamaguchi-Shinozaki K, Shinozaki K (2006) Transcriptional regulatory networks in cellular responses and tolerance to dehydration and cold stresses. Annu Rev Plant Biol 57:781–803

    Article  CAS  PubMed  Google Scholar 

  • Yang DL, Yang Y, He Z (2013a) Roles of plant hormones and their interplay in rice immunity. Mol Plant 6:675–685

    Article  CAS  PubMed  Google Scholar 

  • Yang K, Rong W, Qi L, Li J, Wei X, Zhang Z (2013b) Isolation and characterization of a novel wheat cysteine-rich receptor-like kinase gene induced by Rhizoctonia cerealis. Sci Rep-UK 3:3021

    Google Scholar 

  • Yokotani N, Sato Y, Tanabe S, Chujo T, Shimizu T, Okada K, Yamane H, Shimono M, Sugano S, Takatsuji H, Kaku H, Minami E, Nishizawa Y (2013) WRKY76 is a rice transcriptional repressor playing opposite roles in blast disease resistance and cold stress tolerance. J Exp Bot 64:5085–5097

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang F, Huang LY, Zhang F, Ali J, Cruz C, Zhuo DL, Du ZL, Li ZK, Zhou YL (2015) Comparative transcriptome profiling of a rice line carrying Xa39 and its parents triggered by Xanthomonas oryzae pv. oryzae provides novel insights into the broad-spectrum hypersensitive response. BMC Genom 16:111

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by the CAAS Innovative Team Award, the National High-tech Program of China (No. 2014AA10A603), the Natural Science Foundation of China (No. 31261140369), the Shenzhen Technology Research & Development (No. JSGG20121026152117750), the Shenzhen Peacock Plan (No. 20130415095710361), and the Bill & Melinda Gates Foundation (No. OPP51587).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongli Zhou.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Fan Zhang and Fan Zhang have contributed equally to this work.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, F., Zhang, F., Huang, L. et al. Overlap between Signaling Pathways Responsive to Xanthomonas oryzae pv. oryzae Infection and Drought Stress in Rice Introgression Line Revealed by RNA-Seq. J Plant Growth Regul 35, 345–356 (2016). https://doi.org/10.1007/s00344-015-9538-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00344-015-9538-1

Keywords

Navigation