Skip to main content
Log in

Trichoderma Modulates Stomatal Aperture and Leaf Transpiration Through an Abscisic Acid-Dependent Mechanism in Arabidopsis

  • Published:
Journal of Plant Growth Regulation Aims and scope Submit manuscript

Abstract

Trichoderma species are widespread phytostimulant fungi that act through biocontrol of root pathogens, modulation of root architecture, and improving plant adaptation to biotic and abiotic stress. With the major challenge to better understand the contribution of Trichoderma symbionts to plant adaptation to climate changes and confer stress tolerance, we investigated the potential of Trichoderma virens and Trichoderma atroviride in modulating stomatal aperture and plant transpiration. Arabidopsis wild-type (WT) seedlings and ABA-insensitive mutants, abi1-1 and abi2-1, were co-cultivated with either T. virens or T. atroviride, and stomatal aperture and water loss were determined in leaves. Arabidopsis WT seedlings inoculated with these fungal species showed both decreased stomatal aperture and reduced water loss when compared with uninoculated seedlings. This effect was absent in abi1-1 and abi2-1 mutants. T. virens and T. atroviride induced the abscisic acid (ABA) inducible marker abi4:uidA and produced ABA under standard or saline growth conditions. These results show a novel facet of Trichoderma-produced metabolites in stomatic aperture and water-use efficiency of plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  • Achard P, Cheng H, De Grauwe L, Decat J, Schoutteten H, Moritz T, Van Der Straeten D, Peng J, Harberd NP (2006) Integration of plant responses to environmentally activated phytohormonal signals. Science 311:91–94

    Article  CAS  PubMed  Google Scholar 

  • Allen GJ, Kuchitsu K, Chu SP, Murata Y, Schroeder JI (1999) Arabidopsis abi1-1 and abi2-1 phosphatase mutations reduce abscisic acid-induced cytoplasmic calcium rises in guard cells. Plant Cell 11:1785–1798

    PubMed Central  CAS  PubMed  Google Scholar 

  • Arroyo A, Bossi F, Finkelstein RR, León P (2003) Three genes that affects sugar sensing (Abscisic acid insensitive 4, abscisic acid insensitive 5, and constitutive triple response 1) are differentially regulated by glucose in Arabidopsis. Plant Physiol 133:1–12

    Article  Google Scholar 

  • Asselbergh B, De Vleesschauwer D, Höfte M (2008) Global switches and fine-tuning-ABA modulates plant pathogen defense. Mol Plant-Microbe Interact 21:709–719

    Article  CAS  PubMed  Google Scholar 

  • Bae H, Sicher RC, Kim MS, Kim SH, Strem MD, Melnick RL, Bailey BA (2009) The beneficial endophyte Trichoderma hamatum isolate DIS 219b promotes growth and delays the onset of the drought response in Theobroma cacao. J Exp Bot 60:3279–3295

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Brodribb TJ, McAdam SAM (2011) Passive origins of stomatal control in vascular plants. Science 331:582–585

    Article  CAS  PubMed  Google Scholar 

  • Brotman Y, Landau U, Cuadros-Inostroza A, Takayuki T, Fernie AR, Chet I, Viterbo A, Willmitzer L (2013) Trichoderma-plant root colonization: escaping early plant defense responses and activation of the antioxidant machinery for saline stress tolerance. PLoS Pathog 9:e1003221

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Contreras-Cornejo HA, Macías-Rodríguez L, Cortés-Penagos C, López-Bucio J (2009) Trichoderma virens, a plant beneficial fungus, enhances biomass production and promotes lateral root growth through an auxin-dependent mechanism in Arabidopsis. Plant Physiol 149:1579–1592

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Contreras-Cornejo HA, Ortiz-Castro R, López-Bucio J (2013) Promotion of plant growth and the induction of systemic defence by Trichoderma: physiology, genetics and gene expression. In: Mukherjee PK (ed) Trichoderma Biology and Applications. CABI, London, pp 175–196

    Google Scholar 

  • Contreras-Cornejo HA, Macías-Rodríguez LI, Alfaro-Cuevas R, López-Bucio J (2014) Trichoderma improves growth of Arabidopsis seedlings under salt stress through enhanced root development, osmolite production and Na+ elimination through root exudates. Mol Plant-Microbe Interact 27:503–514

    Article  CAS  PubMed  Google Scholar 

  • Efetova M, Zeier J, Riederer M, Lee CW, Stingl N, Mueller M, Hartung W, Hedrich R, Deeken R (2007) A central role of abscisic acid in drought stress protection of Agrobacterium-induced tumors on Arabidopsis. Plant Physiol 145:853–862

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Finkelstein RR, Somerville CR (1990) Three classes of abscisic acid (ABA)-insensitive mutations of Arabidopsis define genes that control overlapping subsets of ABA responses. Plant Physiol 94:1172–1179

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Finkelstein RR, Wang ML, Lynch TJ, Rao S, Goodman HM (1998) The Arabidopsis abscisic acid response locus ABI4 encodes an APETALA 2 domain protein. Plant Cell 10:1043–1054

    PubMed Central  CAS  PubMed  Google Scholar 

  • Finkelstein R, Lynch T, Reeves W, Petitfils M, Mostachetti M (2011) Accumulation of the transcription factor ABA-insensitive (ABI)4 is tightly regulated post-transcriptionally. J Exp Bot 62:3971–3979

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Flors V, Paradís M, García-Andrade J, Cerezo M, González-Bosch C, García-Agustín P (2007) A tolerant behavior in salt-sensitive tomato plants can be mimicked by chemical stimuli. Plant Signal Behav 2:50–57

    Article  PubMed Central  PubMed  Google Scholar 

  • Gazzarrini S, McCourt P (2001) Genetic interactions between ABA, ethylene and sugar signaling pathways. Curr Opin Plant Biol 4:387–391

    Article  CAS  PubMed  Google Scholar 

  • Herrera-Medina MJ, Steinkellner S, Vierheilig H, Ocampo-Bote JA, García-Garrido JM (2007) Abscisic acid determines arbuscule development and functionality in tomato arbuscular mycorrhiza. New Phytol 175:554–564

    Article  CAS  PubMed  Google Scholar 

  • Joshi-Saha A, Valon C, Leung J (2011) A brand new START: abscisic acid perception and transduction in the guard cell. Sci Signal 4:re4

    Article  PubMed  Google Scholar 

  • Koornneef M, Reuling G, Karssen CM (1984) The isolation and characterization of abscisic acid-insensitive mutants of Arabidopsis thaliana. Physiol Plant 61:377–383

    Article  CAS  Google Scholar 

  • Merlot S, Giraudat J (1997) Genetic analysis of abscisic acid signal transduction. Plant Physiol 114:751–757

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pei ZM, Kuchitsu K, Ward JM, Schwarz M, Schroeder JI (1997) Differential abscisic acid regulation of guard cell slow anion channels in Arabidopsis wild type and abi1 and abi2 mutants. Plant Cell 9:409–423

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Roelfsema MRG, Prins HBA (1995) Effect of absicic acid on stomatal opening in isolated epidermal strips of abi mutants of Arabidopsis thaliana. Physiol Plant 95:373–378

    Article  CAS  Google Scholar 

  • Santner A, Calderon-Villalobos LIA, Estelle M (2009) Plant hormones are versatile chemical regulators of plant growth. Nat Chem Biol 5:301–307

    Article  CAS  PubMed  Google Scholar 

  • Seki M, Narusaka M, Abe H, Kasuga M, Yamaguchi-Shinozaki K, Carninci P, Hayashizaki Y, Shinozaki K (2001) Monitoring the expression pattern of 1300 Arabidopsis genes under drought and cold stresses by using a full-length cDNA microarray. Plant Cell 13:61–72

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sheen J (1998) Mutational analysis of a protein phosphatase 2C involved in abscisic acid signal transduction in higher plants. Proc Natl Acad Sci USA 95:975–980

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Shu K, Zhang H, Wang S, Chen M, Wu Y, Tang S, Liu C, Feng Y, Cao X, Xie Q (2013) ABI4 regulates primary seed dormancy by regulating the biogenesis of abscisic acid and gibberellins in Arabidopsis. PLoS Genet. doi:10.1371/journal.pgen.1003577

    Google Scholar 

  • Siewers V, Kokkelink L, Smedsgaard J, Tudzynski P (2006) Identification of an abscicic acid gene cluster in the grey mold Botrytis cinerea. Appl Environ Microbiol 72:4619–4626

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zielinska M, Michniewicz M (2001) The effects of calcium on the production of ethylene and absicic acid by fungus Fusarium culmorum and by the wheat seedlings infected with that pathogen. Acta Physiol Plant 23:54–63

    Article  Google Scholar 

Download references

Acknowledgments

We are thankful to Dr. Patricia León for kindly providing us with Arabidopsis transgenic seeds. This work was supported by Grants from the Consejo Nacional de Ciencia y Tecnología (CONACYT, México, Grant No. 43978) and the Consejo de la Investigación Científica (UMSNH, México, Grant No. CIC 2.26). H. A. Contreras-Cornejo is indebted to CONACYT for a doctoral fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José López-Bucio.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Contreras-Cornejo, H.A., Macías-Rodríguez, L., Vergara, A.G. et al. Trichoderma Modulates Stomatal Aperture and Leaf Transpiration Through an Abscisic Acid-Dependent Mechanism in Arabidopsis . J Plant Growth Regul 34, 425–432 (2015). https://doi.org/10.1007/s00344-014-9471-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00344-014-9471-8

Keywords

Navigation