Skip to main content
Log in

Phytotoxicity and Identification of Secondary Metabolites of Sapindus saponaria L. Leaf Extract

  • Published:
Journal of Plant Growth Regulation Aims and scope Submit manuscript

Abstract

The aim of this study was to evaluate and quantify the phytotoxic effects of hexane and ethyl acetate fractions obtained from a leaf extract of Sapindus saponaria on the germination and seedling growth of Euphorbia heterophylla (wild poinsettia) and Echinochloa crus-galli (barnyardgrass) and to isolate and identify the major bioactive compounds. A crude ethanol extract was prepared from 100 g of dry plant material in 500 mL of ethanol. The extract was fractionated by liquid–liquid extraction, and the hexane and ethyl acetate fractions were solubilized at concentrations of 0.625, 1.25, 2.5, and 5.0 mg mL−1. The effect of these fractions was compared with the oxyfluorfen herbicide in bioassays. The hexane and ethyl acetate fractions inhibited germination, induced abnormalities, and reduced seedling growth of E. crus-galli and E. heterophylla with concentration-dependent effects. The phytotoxicity of the fractions ranged according to the receptor species, and the ethyl acetate fraction showed a greater inhibitory effect than the hexane fraction on seedling development. For both species, the oxyfluorfen herbicide inhibited mainly shoot growth, whereas the plant extracts inhibited seedling root growth. The S. saponaria fractions caused a reduction of more than 50 % in the size of metaxylem cells of E. heterophylla roots. The ethyl acetate fraction obtained from S. saponaria leaves was subjected to fractionation, and the substance isolated was identified as 3-(1,2-dimethyl-5-oxabicyclo [2.1.1] hexan-2-yl) but-2-enoic acid. This compound also inhibited the germination and seedling growth of E. crus-galli and E. heterophylla, but the ethyl acetate fraction was more potent in reducing seedling growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aliotta G, Cafiero G, Otero AM (2006) Weed germination, seedling growth and their lesson for allelopathy in agruculture. In: Reigosa MJ, Pedrol N, González L (eds) Allelopathy: a physiological process with ecological implications. Springer, Dordrecht, pp 285–297

    Chapter  Google Scholar 

  • Ashrafi ZY, Sadeghi S, Mashhadi HR (2009) Inhibitive effects of barley (Hordeum vulgare) on germination and growth of seedling quack grass (Agropyrum repens). Icel Agric Sci 22:37–43

    Google Scholar 

  • Batish DR, Arora K, Singh HP, Kohli RK (2007) Potential utilization of dried powder of Tagetes minuta as a natural herbicide for managing rice weeds. Crop Prot 26:566–571

    Article  Google Scholar 

  • Brasil (2009) Ministério da Agricultura e Reforma Agrária. Coordenação de Laboratório Vegetal. Regras para análise de sementes, Brasília

    Google Scholar 

  • Chou CH (1999) Roles of allelopathy in plant biodeversity and sustainable agriculture. Crit Rev Plant Sci 18:609–630

    Article  Google Scholar 

  • Cruz-Ortega R, Anaya AL, Hernández-Bautista BE, Laguna-Hernández G (1998) Effects of allelochemical stress produced by Sicyos deppei on seedling root ultrastructure of Phaseolus vulgaris and Cucurbita ficifolia. J Chem Ecol 24:2039–2057

    Article  CAS  Google Scholar 

  • Ding Z, Friml J (2010) Auxin regulates distal stem cell differentiation in Arabidopsis roots. Proc Natl Acad Sci USA 107:12046–12051

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Dorning M, Cipollini D (2006) Leaf and root extracts of the invasive shrub, Lonicera maackii, inhibit seed germination of three herbs with no autotoxic effects. Plant Ecol 184:287–296

    Article  Google Scholar 

  • Eddaya T, Boughdad A, Sibille E, Chaimbault P, Zaid A, Amechrouq A (2013) Biological activity of Sapindus mukorossi Gaerten (Sapindaceae) aqueous extract against Thysanoplusia orichalcea (Lepidoptera: Noctuidae). Ind Crop Prod 50:325–332

    Article  Google Scholar 

  • Ferreira AG, Áquila MEA (2000) Alelopatia: uma área emergente da ecofisiologia. Rev Bras Fisiol Veg 12:175–204

    Google Scholar 

  • Friml J, Benková E, Blilou I, Wisniewska J, Hamann T, Ljung K, Woody S, Sandberg G, Scheres B, Jürgens G, Palme K (2002) AtPIN4 mediates sink-driven auxin gradients and root patterning in Arabidopsis. Cell 108:661–673

    Article  CAS  PubMed  Google Scholar 

  • Gatti AB, Ferreira AG, Arduin M, Perez SCJGA (2010) Allelopathic effects of aqueous extracts of Aristolochia esperanzae O. Kuntze on development of Sesamum indicum L. seedlings. Acta Bot Bras 24:454–461

    Article  Google Scholar 

  • Grisi PU, Ranal MA, Gualtieri SCJ, Santana DG (2012) Allelopathic potential of Sapindus saponaria L. leaves in the control of weeds. Acta Sci Agron 34:1–9

    Article  Google Scholar 

  • Grisi PU, Gualtieri SCJ, Anese S, Pereira VC, Forim MR (2013) Effect of Serjania lethalis ethanolic extract on weed control. Planta Daninha 31:239–248

    Article  Google Scholar 

  • He HQ, Shen LH, Xiong J, Jia XL, Lin WX, Wu H (2004) Conditional genetic effect of allelopathy in rice (Oryza sativa L.) under different environmental conditions. Plant Growth Regul 44:211–218

    Article  CAS  Google Scholar 

  • Hong NH, Xuan TD, Tsuzuki E, Terao H, Matsuo M, Khanh TD (2004) Weed control of four higher plant species in paddy rice fields in Southeast Asia. J Agron Crop Sci 190:59–64

    Article  Google Scholar 

  • Huang HC, Wu MD, Tsai WJ, Liao SC, Liaw CC, Hsu LC, Wu YC, Kuo YH (2008) Triterpenoid saponins from the fruits and galls of Sapindus mukorossi. Phytochemistry 69:1609–1616

    Article  CAS  PubMed  Google Scholar 

  • Jeyabalan S, Palayan M (2009) Antihyperglycemic and antidiabetic activity of leaves extracts of Sapindus emarginatus Vahl. Asian Biomed 3:313–318

    Google Scholar 

  • Khan M, Hussain F, Musharaf S, Imdadullah (2011) Allelopathic effects of Rhazya stricta decne on seed germination and seedling growth of maize. Afr J Agr Res 6:6391–6396

    Google Scholar 

  • Khanh TD, Chung MI, Xuan TD, Twata S (2005) The exploitation of crop allelopathy in sustainable agricultural production. J Agro Crop Sci 191:172–184

    Article  Google Scholar 

  • Kilani S, Sghaier MB, Limem I, Bouhlel I, Boubaker J, Bhouri W, Skandrani I, Neffatti A, Ammar RB, Dijoux-Franca MG, Ghedtra K, Chekir-Ghedira L (2008) In vitro evaluation of antibacterial, antioxidant, cytotoxic and apoptotic activities of the tubers infusion and extracts of Cyperus rotundus. Bioresour Technol 99:9004–9008

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi K (2004) Factors affecting phytotoxic activity of allelochemicals in soil. Weed Biol Manag 4:1–7

    Article  CAS  Google Scholar 

  • Köppen W (1948) Climatologia: com um estúdio de los climas de la tierra. Fondo de Cultura Econômica, México

    Google Scholar 

  • Kraus JE, Arduin M (1997) Manual básico de métodos em morfologia vegetal. Seropedica, EDUR

    Google Scholar 

  • Lasisi AA, Ayinde BW, Adeleye AO, Onocha PA, Oladosu IA, Idowu PA (2012) New triterpene isovanniloyl and antibacterial activity of constituents from the roots of Paullinia pinnata Linn (Sapindaceae). J Saudi Chem Soc. doi:10.1016/j.jscs.2011.12.012

  • Lemos TLG, Mendes AL, Sousa MP, BrazFilho R (1992) New saponin from Sapindus saponaria. Fitoterapia 63:515–517

    CAS  Google Scholar 

  • Macías FA, Lacret R, Varela RM, Nogueiras C, Molinillo JMG (2010) Isolation and phtytotoxicity of terpenes from Tectona grandis. J Chem Ecol 36:396–404

    Article  PubMed  Google Scholar 

  • Mahar KS, Rana TS, Ranade SA, Meena B (2011) Genetic variability and population structure in Sapindus emarginatus Vahl from India. Gene 485:32–39

    Article  CAS  PubMed  Google Scholar 

  • Marco CA, Teixeira E, Simplício A, Oliveira C, Costa J, Feitosa J (2012) Chemical composition and allelopathyc activity of essential oil of Lippia sidoides Cham. Chilean J Agric Res 72:157–160

    Article  Google Scholar 

  • Morikawa T, Xie Y, Asao Y, Okamoto M, Yamashita C, Muraoka O, Matsuda H, Pongpiriyadacha Y, Yuan D, Yoshikawa M (2009) Oleanane-type triterpene oligoglycosides with pancreatic lipase inhibitory activity from the pericarps of Sapindus rarak. Phytochemistry 70:1166–1172

    Article  CAS  PubMed  Google Scholar 

  • Murgu M, Rodrigues-Filho E (2006) Dereplication of Glycosides from Sapindus saponaria using Liquid Chromatography-Mass Spectrometry. J Brazil Chem Soc 17:1281–1290

    CAS  Google Scholar 

  • Panozzo LE, Agostinetto D, Moraes PVD, Magano DA, Harter A, Pinto LB (2014) Control of Echinochloa sp. in the Irrigated Rice Crop. Int J Agron 2014:1–6

    Article  Google Scholar 

  • Parvez SS, Parvez MM, Nishihara E, Gemma H, Fujii Y (2003) Tamarindus indica L. leaf is a source of allelopathic substance. Plant Growth Regul 40:107–115

    Article  CAS  Google Scholar 

  • Pelegrini DD, Tsuzuki JK, Amado CAB, Cortez DAG, Ferreira ICP (2008) Biological activity and isolated compounds in Sapindus saponaria L. and other plants of the genus Sapindus. Lat Am J Pharm 27:922–927

    CAS  Google Scholar 

  • Petersson SV, Johansson AI, Kowalczyk M, Makoveychuk A, Wang JY, Moritz T, Grebe M, Benfey PN, Sandberg G, Ljung K (2009) An auxin gradient and maximum in the Arabidopsis root apex shown by highresolution cell-specific analysis of IAA distribution and synthesis. Plant Cell 21:1659–1668

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pimentel-Gomes FP (1990) Curso de estatística experimental, 13th edn. Nobel, Piracicaba

    Google Scholar 

  • Prati D, Bossdorf O (2004) Allelopathic inhibition of germination by Alliaria petiolata (Brassicaceae). Am J Bot 91:285–288

    Article  PubMed  Google Scholar 

  • Ranal MA, Santana DG (2006) How and why to measure the germination process? Rev Bras Bot 29:1–11

    Article  Google Scholar 

  • Rodrigues BN, Almeida FS (2011) Guia de herbicidas, 6th edn. Edição dos Autores, Londrina

    Google Scholar 

  • Sampietro DA, Vattuone MA (2006) Sugarcane straw and its phytochemicals as growth regulators of weed and crop plants. Plant Growth Regul 48:21–27

    Article  CAS  Google Scholar 

  • Santos WD, Ferrarese ML, Nakamura CV, Mourão KS, Mangolin CA, Ferrarese-Filho O (2008) Soybean (Glycine max) root lignification induced by ferulic acid. The possible mode of action. J Chem Ecol 34:1230–1241

    Article  PubMed  Google Scholar 

  • Sodaeizadeh H, Rafieiolhossaini M, Havlik J, Damme PV (2009) Allelopathic activity of different plant parts of Peganum harmala L. and identification of their growth inhibitors substances. Plant Growth Regul 59:227–236

    Article  CAS  Google Scholar 

  • Souza FM, Gandolfi S, Perez SCJGA, Rodrigues RR (2010) Allelopathic potential of bark and leaves of Esenbeckia leiocarpa Engl. (Rutaceae). Acta Bot Bras 24:169–174

    Article  Google Scholar 

  • Takatsuka H, Umeda M (2014) Hormonal control of cell division and elongation along differentiation trajectories in roots. J Exp Bot 65:2633–2643

    Article  CAS  PubMed  Google Scholar 

  • Tanaka H, Dhonukshe P, Brewer PB, Friml J (2006) Spatiotemporal asymmetric auxin distribution: a means to coordinate plant development. Cell Mol Life Sci 63:2738–2754

    Article  CAS  PubMed  Google Scholar 

  • Tanveer A, Jabbar MK, Kahliq A, Matloob A, Abbas RN, Javaid MM (2012) Allelopathic effects of aqueous and organic fractions of Euphorbia dracunculoides Lam. on germination and seedling growth of chickpea and wheat. Chil J Agric Res 72:495–501

    Article  Google Scholar 

  • Tawaha AM, Turk MA (2003) Allelopathic effects of Black Mustard (Brassica nigra) on germination and growth of Wild Barley (Hordeum spontaneum). J Agron Crop Sci 189:298–303

    Article  Google Scholar 

  • Teerarak M, Charoenying P, Laosinwattana C (2012) Physiological and cellular mechanisms of natural herbicide resource from Aglaia odorata Lour. on bioassay plants. Acta Physiol Plant 34:1277–1285

    Article  CAS  Google Scholar 

  • Tsuzuki JK, Svidzinski TI, Shinobu CS, Silva LF, Rodrigues-Filho E, Cortez DA, Ferreira IC (2007) Antifungal activity of the extracts and saponins from Sapindus saponaria L. An Acad Bras Cienc 79:577–583

    Article  CAS  PubMed  Google Scholar 

  • Vidal RA, Trezzi MM, Prado R, Ruiz-Santaella JP, Vila-Aiub M (2007) Glyphosate resistant biotypes of wild poinsettia (Euphorbia heterophylla L.) and its risk analysis on glyphosate-tolerant soybeans. J Food Agric Environ 5:265–269

    CAS  Google Scholar 

  • Wahab SMA, Selim MA (1985) Lipids and flavonoids of Sapindus saponaria. Fitoterapia 56:167–168

    Google Scholar 

  • Wink M (2003) Evolution of secondary metabolites from an ecological and molecular phylogenetic perspective. Phytochemistry 64:3–19

    Article  CAS  PubMed  Google Scholar 

  • Xuan TD, Shinkichi T, Khanh TD, Chung IM (2005) Biological control of weeds and plant pathogens in paddy rice by exploiting plant allelopathy: an overview. Crop Prot 24:197–206

    Article  Google Scholar 

  • Yoshimura H, Sawa Y, Tamotsu S, Sakai A (2011) 1,8-cineole inhibits both proliferation and elongation of by-2 cultured tobacco cells. J Chem Ecol 37:320–328

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) and Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP 2011/11.860-5) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrícia Umeda Grisi.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 671 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grisi, P.U., Forim, M.R., Costa, E.S. et al. Phytotoxicity and Identification of Secondary Metabolites of Sapindus saponaria L. Leaf Extract. J Plant Growth Regul 34, 339–349 (2015). https://doi.org/10.1007/s00344-014-9469-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00344-014-9469-2

Keywords

Navigation