Skip to main content
Log in

The Effect of Coumarin Application on Early Growth and Some Physiological Parameters in Faba Bean (Vicia faba L.)

  • Published:
Journal of Plant Growth Regulation Aims and scope Submit manuscript

Abstract

Many coumarins have been identified from natural sources, especially green plants. These compounds affect many plant activities and can also control growth processes. The effect of coumarin (COU) on germination, early growth, nutrient mobilization, and some physiological parameters of faba bean (Vicia faba L.) was researched. Seeds of faba bean were primed with different concentrations of COU (0.5, 1.0, 2.0, and 4.0 mM) to elucidate the effect on germination and nutrient mobilization. Accordingly, a greenhouse pot experiment was conducted to study the effect of 1.0 mM COU, as a seed priming treatment alone or in combination with foliar application, on the growth parameters, some biochemical constituents from primary and secondary metabolism and phytohormones of faba bean. The impact of COU was more pronounced on growth than germination, and was dependent on concentration and the mode of application. Both COU treatments significantly improved the level of primary and secondary metabolites as well as phytohormones. These data suggest that COU can affect the growth and physiology of faba bean either directly, as an active growth substance, or indirectly by its interaction with the metabolism of phytohormones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abenavoli MR, Sorgonà A, Muscolo A (2001) Morphophysiological changes in tissue culture of Petunia hybridain response to the allelochemical coumarin. Allelopath J 8:171–177

    Google Scholar 

  • Abenavoli MR, Sorgonà A, Albano S, Cacco G (2004) Coumarin differentially affects the morphology of different root types of maize seedlings. J Chem Ecol 30:1871–1883

    Article  CAS  PubMed  Google Scholar 

  • Abenavoli MR, Cacco G, Sorgona A et al (2006) The inhibitory effects of coumarin on the germination of durum wheat (Triticum turgidum ssp. durum, CV. Simeto) seeds. J Chem Ecol 32:489–506

    Article  CAS  PubMed  Google Scholar 

  • Abou El-Yazeid A (2011) Effect of foliar application of salicylic acid and chelated zinc on growth and productivity of sweet pepper (capsicum annuum L.) under autumn planting. Res J Agric Biol Sci 7:423–433

    CAS  Google Scholar 

  • Ahrabi F, Enteshari S, Moradshahi A (2010) Allelopathic potential of para-hydroxybenzoic acid and coumarin on canola: Talaieh cultivar. J Med Plants Res 5:5104–5109

    Google Scholar 

  • Alexieva V, Karanov E, Nikolova R, Bojilova A (1995) Plant growth regulating activity of some phosphorus derivatives of coumarin. Bulg J Plant Physiol 21:45–51

    CAS  Google Scholar 

  • Aliotta G, Cafiero G, Fiorentino A, Strumia S (1993) Inhibition of radish germination and root growth by coumarin and phenylpropanoids. J Chem Ecol 19:175–183

    Article  CAS  PubMed  Google Scholar 

  • Alvim PDT (1960) Net assimilation rate and growth behavior of beans as affected by gibberellic acid urea and sugar sprays. Plant Physiol 35:285

    Article  PubMed Central  Google Scholar 

  • Al-Wakeel SM, Gabr MM, Abu-El-Soud WM et al (2013) Coumarin and salicylic acid activate resistance to Macrophomina phaseolina in Helianthus annuus. Acta Agron Hungarica 61:23–35

    Article  CAS  Google Scholar 

  • Batish DR, Singh HP, Kaur S et al (2008) Caffeic acid affects early growth, and morphogenetic response of hypocotyl cuttings of mung bean (Phaseolus aureus). J Plant Physiol 165:297–305

    Article  CAS  PubMed  Google Scholar 

  • Baydar NG, Harmankaya N (2005) Changes in endogenous hormone levels during the ripening of grape cultivars having different berry set mechanisms. Turk J Agric 29:205–210

    Google Scholar 

  • Brown SA, Zobel AM (1990) Biosynthesis and distribution of coumarins in the plant. In: Proceedings Conference Coumarins: Research and Applications, Padua, Italy, 20–22 Sep 1990, pp 5–37

  • Burström H (1957) Auxin and the mechanism of root growth. Symp Soc exp Biol 11:44–62

    PubMed  Google Scholar 

  • Cheikh N, Brenner ML, Huber JL, Huber SC (1992) Regulation of sucrose phosphate synthase by gibberellins in soybean and spinach plants. Plant Physiol 100:1238–1242

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chen W-S, Liu H-Y, Liu Z-H et al (1994) Geibberllin and temperature influence carbohydrate content and flowering in Phalaenopsis. Physiol Plant 90:391–395

    Article  CAS  Google Scholar 

  • Cheynier V, Comte G, Davies KM et al (2013) Plant phenolics: recent advances on their biosynthesis, genetics, and ecophysiology. Plant Physiol Biochem 72:1–20. doi:10.1016/j.plaphy.2013.05.009

    Article  CAS  PubMed  Google Scholar 

  • Clark JM, Switzer RL (1977) Experimental Biochemistry, 2nd edn. W.H. Freeman & Company, San Francisco

    Google Scholar 

  • Datta KS, Nanda KK (1985) Effect of some phenolic compounds and gibberellic acid on growth and development of Cheena millet (Panicum miliaceus L.). Indian J Plant Physiol 28:298–302

    CAS  Google Scholar 

  • Devi SR, Prasad MNV (1992) Effect of ferulic acid on growth and hydrolytic enzyme activities of germinating maize seeds. J Chem Ecol 18:1981–1990

    Article  CAS  PubMed  Google Scholar 

  • Dhawan RS, Nanda KK (1982) Stimulation of Root Formation on Impatiens balsamina L. cuttings by coumarin and the associated biochemical changes. Biol Plant 24:177–182

    Article  CAS  Google Scholar 

  • Doğramaci M, Anderson JV, Chao WS, Foley ME (2014) Foliar application of glyphosate affects molecular mechanisms in underground adventitious buds of leafy spurge (Euphorbia esula) and alters their vegetative growth patterns. Weed Sci 62:217–229

    Article  Google Scholar 

  • Duenas M, Hernandez T, Estrella I (2006) Assessment of in vitro antioxidant capacity of the seed coat and the cotyledon of legumes in relation to their phenolic contents. Food Chem 98:95–103

    Article  CAS  Google Scholar 

  • Einhellig F (2004) Mode of allelochemical action of phenolic compounds. In: Macías FA, Galindo JCG, Molinillo JMGCH (eds) Allelopathy: Chemistry and mode action of Allelochemicals. CRC press, Baco Raton, pp 217–238

    Google Scholar 

  • El-Tayeb MA, El-Enany AE, Ahmed NL (2006) Salicylic acid-induced adaptive response to copper stress in sunflower (Helianthus annuus L.). Plant Growth Regul 50:191–199

    Article  CAS  Google Scholar 

  • El-Yazal MAS, El-Yazal SAS, Rady MM (2014) Exogenous dormancy-breaking substances positively change endogenous phytohormones and amino acids during dormancy release in “Anna”apple trees. Plant Growth Regul 72:211–220

    Article  Google Scholar 

  • Ferrarese MLL, de Souza NE, Rodrigues JD, Ferrarese-Filho O (2001) Carbohydrate and lipid status in soybean roots influenced by ferulic acid uptake. Acta Physiol Plant 23:421–427

    Article  CAS  Google Scholar 

  • Garde-Cerdán T, López R, Portu J et al (2014) Study of the effects of proline, phenylalanine, and urea foliar application to Tempranillo vineyards on grape amino acid content. Comparison with commercial nitrogen fertilisers. Food Chem 163:136–141

    Article  PubMed  Google Scholar 

  • Hao JH, Wang XL, Dong CJ et al (2011) Salicylic acid induces stomatal closure by modulating endogenous hormone levels in cucumber cotyledons. Russ J Plant Physiol 58:906–913

    Article  CAS  Google Scholar 

  • Hartree EF (1972) Determination of protein: a modification of the Lowry method that gives a linear photometric response. Anal Biochem 48:422–427

    Article  CAS  PubMed  Google Scholar 

  • Holappa LD, Blum U (1991) Effects of exogenously applied ferulic acid, a potential allelopathic compound, on leaf growth, water utilization, and endogenous abscisic acid levels of tomato, cucumber, and bean. J Chem Ecol 17:865–886

    Article  CAS  PubMed  Google Scholar 

  • Iqbal N, Nazar R, Khan MIR et al (2011) Role of gibberellins in regulation of source-sink relations under optimal and limiting environmental conditions. Curr Sci 100:998–1007

    CAS  Google Scholar 

  • Kato-Noguchi H, Macías FA (2005) Effects of 6-methoxy-2-benzoxazolinone on the germination and α-amylase activity in lettuce seeds. J Plant Physiol 162:1304–1307

    Article  CAS  PubMed  Google Scholar 

  • Kaur S, Gupta AK, Kaur N (2000) Effect of GA3, kinetin and indole acetic acid on carbohydrate metabolism in chickpea seedlings germinating under water stress. Plant Growth Regul 30:61–70

    Article  CAS  Google Scholar 

  • Khodary SEA (2004) Effect of salicylic acid on the growth, photosynthesis and carbohydrate metabolism in salt-stressed maize plants. Int J Agric Biol 6:5–8

    CAS  Google Scholar 

  • Knypl JS (1964) Characteristic features of the coumarin induced growth. Planta 61:352–360

    Article  CAS  Google Scholar 

  • Kupidlowska E, Kowalec M, Sulkowski G, Zobel AM (1994) The effect of coumarins on root elongation and ultrastructure of meristematic cell protoplast. Ann Bot 73:525–530

    Article  CAS  Google Scholar 

  • Letham D (1978) Naturally-occurring plant growth regulators other than the principal hormones of higher plants. Phytohormones Relat Compd—A Compr Treatise 1:349–417

    CAS  Google Scholar 

  • Li X, Gao M-J (2011) Modulation of root branching by a coumarin derivative. Plant Signal Behav 6:1654–1655

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Li H-H, Inoue M, Nishimura H et al (1993) Interactions of trans-cinnamic acid, its related phenolic allelochemicals, and abscisic acid in seedling growth and seed germination of lettuce. J Chem Ecol 19:1775–1787

    Article  CAS  PubMed  Google Scholar 

  • Li X, Gruber MY, Hegedus DD et al (2011) Effects of a Coumarin derivative, 4-Methylumbelliferone, on seed germination and seedling establishment in Arabidopsis. J Chem Ecol 37:880–890

    Article  CAS  PubMed  Google Scholar 

  • Lowe LE (1993) Soil sampling and methods of analysis, Canadian society. CRC press, Boca Raton

    Google Scholar 

  • Lupini A, Sorgonà A, Miller AJ, Abenavoli MR (2010) Short-term effects of coumarin along the maize primary root axis. Plant Signal Behav 5:1395–1400

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Manonmani V, Begum MAJ, Jayanthi M (2014) Halo Priming of Seeds. Res J Seed Sci 7:1

    Article  Google Scholar 

  • Mata R, Macías M, Rojas I (1998) Phytotoxic compounds from Esenbeckia yaxhoob. Phytochemistry 330–338

  • Mersie W, Singh M (1993) Phenolic acids affect photosynthesis and protein synthesis by isolated leaf cells of velvet-leaf. J Chem Ecol 19:1293–1301

    Article  CAS  PubMed  Google Scholar 

  • Mohammad Ali SO (2011) Effect of foliar application of nitrogen with or without growth regulators on Deadly Nightshade Part II: tropane alkaloids content and yield. Int. Symp. Med. Aromat. Plants 1023:221–227

    Google Scholar 

  • Murray RDH, Méndez J, Brown SA (1982) The natural coumarins: occurrence, chemistry, and biochemistry. Wiley, New York

    Google Scholar 

  • Neumann J (1959) An auxin-like action of coumarin. Science 129:1675–1676

    Article  CAS  PubMed  Google Scholar 

  • Neumann J (1960) The Nature of the Growth-Promoting Action of Coumarin. Physiol Plant 13:328–341

    Article  CAS  Google Scholar 

  • Peer WA, Murphy AS (2007) Flavonoids and auxin transport: modulators or regulators? Trends Plant Sci 12:556–563

    Article  CAS  PubMed  Google Scholar 

  • Pergo ÉM, Abrahim D, da Silva PCS et al (2008) Bidens pilosa L. exhibits high sensitivity to coumarin in comparison with three other weed species. J Chem Ecol 34:499–507

    Article  CAS  PubMed  Google Scholar 

  • Radwan DEM, Fayez KA, Younis Mahmoud S et al (2007) Physiological and metabolic changes of Cucurbita pepo leaves in response to zucchini yellow mosaic virus (ZYMV) infection and salicylic acid treatments. Plant Physiol Biochem 45:480–489

    Article  CAS  PubMed  Google Scholar 

  • Raskin I (1992) Role of salicylic acid in plants. Annu Rev Plant Biol 43:439–463

    Article  CAS  Google Scholar 

  • Ray SD, Guruprasad KN, Laloraya MM (1980) Antagonistic action of phenolic compounds on abscisic acid-induced inhibition of hypocotyl growth. J Exp Bot 31:1651–1656

    Article  CAS  Google Scholar 

  • Razavi SM (2011) Plant Coumarins as allelopathic agents. Int J Biol Chem 5:86–90. doi:10.3923/ijbc.2011.86.90

    Article  CAS  Google Scholar 

  • Reigosa MJ, Souto XC, Gonz L et al (1999) Effect of phenolic compounds on the germination of six weeds species. Plant Growth Regul 28:83–88

    Article  CAS  Google Scholar 

  • Sauvesty A, Page F, Huot J (1992) A simple method for extracting plant phenolic compounds. Can J For Res 22:654–659

    Article  CAS  Google Scholar 

  • Taiz L, Zeiger E (2010) Gibberellins: Regulators of Plant Height. In: Zeiger E (ed) Plant Physiol. Sinauer Associates, Incorporated: Hard Cover, Sunderland, pp 461–493

    Google Scholar 

  • Tartoura K, da Rocha A, Youssef S (2004) Synergistic interaction between coumarin 1,2-benzopyrone and indole-3-butyric acid in stimulating adventitious root formation in Vigna radiata (L.) Wilczek cuttings: I. Endogenous free and conjugated IAA and basic isoperoxidases. Plant Growth Regul 42:253–262

    Article  CAS  Google Scholar 

  • Tomaszewski M, Thimann KV (1966) Interactions of phenolic acids, metallic ions and chelating agents on auxin-induced growth. Plant Physiol 41:1443–1454

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wolf FT (1974) Effects of coumarin upon plant growth and development. J Tennessee Acad Sci 49:27–33

    CAS  Google Scholar 

  • Zhou X, Song H, Wang J (2013) Effects of coumarin on net nitrate uptake and nitrogen metabolism in roots of alfalfa (Medicago sativa). Allelopath J 31:377

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed M. Saleh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saleh, A.M., Madany, M.M.Y. & González, L. The Effect of Coumarin Application on Early Growth and Some Physiological Parameters in Faba Bean (Vicia faba L.). J Plant Growth Regul 34, 233–241 (2015). https://doi.org/10.1007/s00344-014-9459-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00344-014-9459-4

Keywords

Navigation