Skip to main content
Log in

An Approach of Improving Plant Salt Tolerance of Lucerne (Medicago sativa) Grown Under Salt Stress: Use of Bio-inoculants

  • Published:
Journal of Plant Growth Regulation Aims and scope Submit manuscript

Abstract

This study was conducted to examine the effects of the combined application of rhizobial strains and plant growth-promoting rhizobacteria at different ratios on growth and salt tolerance of lucerne. Vegetative growth, relative water content, photosynthetic pigments and organic and inorganic solute contents in leaves were measured after 6 weeks of sowing. The results showed that bacterial inoculation significantly increased shoot and root dry weight, leaf number and relative water content whereas salinity reduced the growth of plants mainly in root dry weight and leaf area. However, the obtained results showed a significant improvement in the growth under salt stress of inoculated plants compared to non-inoculated ones. Regarding photosynthetic pigments, inoculation and salt induced significant variations in the total chlorophyll content, whereas changes in carotenoids remained insignificant. The inoculated plants accumulated less sodium and chloride and maintained a constant potassium content compared to non-inoculated plants. This would imply that the bacteria have retained Na+ and Cl and so have consequently limited their translocation to the leaves and have promoted selectivity of K+ ions relative to Na+. The levels of organic solutes and soluble proteins were not significantly affected in most plants by both salt and bacterial inoculation, suggesting that they are not directly involved in the strategy of salt tolerance of Lucerne. These results indicate that inoculation with these plant growth promoting rhizobacteria could mitigate the adverse effects of soil salinity on growth of lucerne suggesting that these species could be used as bio-inoculants to increase productivity in arid and semi-arid lands.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Al Khanjari S, Al Khathiri A, Esechie HA (2002) Variation in chlorophyll meter readings, nodulation and dry matter yield of alfalfa (Medicago sativa L.) cultivars differing in salt tolerance. Crop Res 24:350–356

    Google Scholar 

  • Antoun H, Beauchamp CJ, Goussard N, Chabot R, Lalande R (1998) Potential of Rhizobium and Brady-rhizobium species as plant growth promoting rhizobacteria on non legumes: effects of Radishes (Rhaphanus sativus L.). Plant Soil 204:57–67

    Article  CAS  Google Scholar 

  • Apse MP, Blumwald E (2002) Engineering salt tolerance in plants. Curr Opin Biotech 13:146–150

    Article  CAS  PubMed  Google Scholar 

  • Ashraf M, O’Leary JW (1996) Responses of some newly developed salt-tolerant genotypes of spring wheat to salt stress: II Water relations and photosynthetic capacity. Acta Bot Neerl 45:29–39

    Article  CAS  Google Scholar 

  • Ashraf M, Hasnain S, Berge O, Mahmood T (2004) Inoculating wheat seeds with exopolysaccharides producing bacteria restricts sodium uptake and stimulates plant growth under salt stress. Biol Fert Soils 40:157–162

    CAS  Google Scholar 

  • Awad NM, Turky AS, Abdelhamid MT, Attia M (2012) Ameliorate of environmental salt stress on the growth of Zea mays L. plants by exopolysaccharides producing bacteria. J Appl Sci Res 8:2033–2044

    CAS  Google Scholar 

  • Belkhodja M, Bidai Y (2004) Réponse des graines d’Atriplex halimus L. à la salinité au stade de la germination. Secheresse 15:331–335

    Google Scholar 

  • Boughalleb F, Hajlaoui H, Mhamdi M, Denden M (2011) Possible involvement of organic compounds and the antioxidant defense system in salt tolerance of Medicago arborea L. Agron J 6:353–365

    CAS  Google Scholar 

  • Boughanmi N, Michonneau P, Daghfous D, Fleurat-Lessard P (2005) Adaptation of Medicago sativa cv. Gabès to long-term NaCl stress. J Plant Nutr Soil Sc 168:262–268

    Article  CAS  Google Scholar 

  • Boutraa T, Sanders FE (2001) Influence of water stress on grain yield and vegetative growth of two cultivars of bean (Phaseolus vulgaris L.). J Agron Crop Sci 187(4):251–257

    Article  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein –dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Camila D Medeiros, Jose´ R. C Ferreira Neto, Marciel T. Oliveira Rebeca Rivas, Valesca Pandolfi, Ederson A. Kido, Jose´. I. Baldani, Mauro G.Santos (2014) Photosynthesis, antioxidant activities and transcriptional responses in two sugarcane (Saccharum officinarum L.) cultivars under salt stress. Acta Physiol Plant 36(2): 447–459

  • Cetaldo DA, Haroon M, Schrader LE, Young VL (1975) Rapid colorimetric determination of nitrate in plant tissue by nitration of salicylic acid. Commun Soil Sci Plan 6:71–80

    Article  Google Scholar 

  • Ciriaco da Silva E, Nogueira RJMC, Pinheiro De Araujo F, Franklin de Melo N, de Azevedo Dias, Neto A (2008) Physiological responses to salt stress in young umbu plants. Environ Exp Bot 63:147–157

    Article  CAS  Google Scholar 

  • Clark JM, Mc Caig TN (1982) Evaluation of techniques for screening for drought resistance in wheat. Crop Sci 22:503–506

    Article  Google Scholar 

  • De Lacerda CF, Cambraia J, Oliva MA, Ruiz HA, Prisco JT (2003) Solute accumulation and distribution during shoot and leaf devlopment in two sorghum genotypes under salt stress. Environ Exp Bot 49:107–120

    Article  Google Scholar 

  • Delauney A, Verma DPS (1993) Proline biosynthesis and osmoregulation in plants. Plant J 4:215–223

    Article  CAS  Google Scholar 

  • Demirevska K, Zasheva D, Dimitrov R, Simova Stoilova L, Stamenova M, Feller U (2009) Drought stress effects on Rubisco in Wheat: changes in the Rubisco large subunit. Acta Physiol Plant 31:1129–1138

    Article  CAS  Google Scholar 

  • Desbrosses GJ, Stougaard J (2011) Root nodulation: A paradigm for how plant- microbe symbiosis influences host developmental pathways. Cell host Microbe 10:348–358

    Article  CAS  PubMed  Google Scholar 

  • Dimpka C, Weinand T, Ash F (2009) Plant Rhizobacteria interactions alleviate abiotic stress conditions. Plant, Cell Environ 32:1682–1694

    Article  Google Scholar 

  • Ding Y, Kalo P, Yendrek C, Sun J, Liang Y, Marsh JF, Harris JM, Oldroyd GED (2008) Abscissic acid coordinates Nod factor and cytokinin signaling during the regulation of nodulation in Medicago truncatula. Plant Cell 20:2681–2695

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Djilianov D, Prinsen E, Oden S, Van Onckelen A, Muller J (2003) Nodulation under salt stress of alfalfa lines obtained after in vitro selection for osmotic tolerance. Plant Sci 165:887–894

    Article  CAS  Google Scholar 

  • Dobbelaere S, Croonenborghs A, Thys A, Vanderbroek A, Vanderleyden J (1999) Phytostimulatory effects of Azospirillum brasilense wild type and mutant strains altered in IAA production on wheat. Plant Soil 212:155–164

    Article  CAS  Google Scholar 

  • Elsheery NI, Cao KF (2008) Gas exchange, chlorophyll fluorescence and osmotic adjustment in two mango cultivars under drought stress. Acta Physiol Plant 30:769–777

    Article  CAS  Google Scholar 

  • Esechie HA, Rodriguez V, Al Asmi MS (2002) Effect of sodium chloride salinity on cation equilibria in alfalfa (Medicago sativa L.). Crop Res 23:253–258

    Google Scholar 

  • FAO (2002) Crop water management alfalfa. FAO, http://www.fao.Org/AG/aglW/cropwater/alfalfa.stm

  • FAO (2010) Land and plant nutrition management service, FAO, http://www.fao.org/ag/AGL/agll/prosoil/saline.htm

  • Farissi M, Bouizgaren A, Faghire M, Bargaz A, Ghoulam C (2011) Agro-physiological responses of Moroccan alfalfa (Medicago sativa L.) populations to salt stress during germination and early seedling stages. Seed Sci Technol 39:389–401

    Article  Google Scholar 

  • Figueiredo H, Burity C, Martinez C, Chanway C (2008a) Alleviation of drought stress in the common bean (Phaseolus vulgaris L.) by co-inoculation with Paenibacillus polymyxa and Rhizobium tropici. Appl Soil Ecol 40:182–188

    Article  Google Scholar 

  • Figueiredo MVB, Martinez CR, Burity HA, Chanway CP (2008b) Plant growth promoting rhizobacteria for improving nodulation and nitrogen fixation in the common bean(Phaseolus vulgaris L.). World J Microbiol Biotechnol 24:1178–1193

    Article  Google Scholar 

  • Garg N, Shikha C (2011) Effect of mycorhizal inoculation on growth, nitrogen fixation and nutrient uptake in Cicer arietinum under salt stress. Turk. J. Agric. For 35:205–214

    CAS  Google Scholar 

  • Garg N, Singla R (2004) Growth, photosynthesis, nodule nitrogen and carbon fixation in the chickpea cultivars under salinity stress. Braz J Plant Physiol 16:50–74

    Article  Google Scholar 

  • Ghosh S, Basu PS (2006) Production and metabolism of indole acetic acid in roots and root nodules of Phaseolus mungo. Microbiol Res 161:362–366

    Article  CAS  PubMed  Google Scholar 

  • Giri B, Mukerji KG (2004) Mycorrhizal inoculants alleviates salt stress in Sesbania aegyptiaca and Sesbania grandiflora under field conditions: evidence for reduced sodium and improved magnesium uptake. Mycorrhiza 14:307–312

    Article  PubMed  Google Scholar 

  • Guru Devi R, Pandiyarajan V, Gurusaravanan P (2012) Alleviating effect of IAA on salt stressed Phaseolus mungo L. with reference to growth and biochemical characteristics. Rec Res Sci Tech 4:22–24

    CAS  Google Scholar 

  • Hamrouni L, Hanana M, Abdelly C, Ghorbel A (2011) Exclusion du chlorure et inclusion du sodium : deux mécanismes concomitants de tolérance à la salinité chez la vigne sauvage vitis vinifera subsp. sylvestris Biotechnol Agronom Soc Environ 15:387–400

    CAS  Google Scholar 

  • Han HS, Lee KD (2005a) Plant growth promoting rhizobacteria effect on antioxidant status, photosynthesis, mineral uptake and growth of lettuce under soil salinity. Res J Agric Biol Sci 1:210–215

    Google Scholar 

  • Han HS, Lee KD (2005b) Physiological response of soybean- inoculation of Bradyrhizobium japonicum with PGPR in saline soil conditions. Res J Agric Biol Sci 1:216–221

    Google Scholar 

  • Hanana M, Hamrouni L, Cagnac O, Blumwald E (2011) Mécanismes et strategies cellulaires de tolérance à la salinité (NaCl) chez les plantes. Environ Rev 19:121–140

    Article  CAS  Google Scholar 

  • Kaya C, Ashraf M, Dikilitas M, Tuna AL (2013) Alleviation of salt stress induced adverse effects on maize plants by exogenous application of indole acetic acid (IAA) and inorganic nutrients- A field trial. Aust J Crop Sci 7:249–254

    CAS  Google Scholar 

  • Laguerre G, Allard MR, Revoy F, Amarger N (1994) Rapid identification of Rhizobia by restriction fragment length polymorphism analysis of PCR amplified 16S rRNA genes. Appl Environ Microbiol 60:56–63

    PubMed Central  CAS  PubMed  Google Scholar 

  • Lichtenthaler HK (1987) Chlorophylls and caratenoids: pigments of photosynthetic biomembranes. Methods Enzymol 148:350–382

    Article  CAS  Google Scholar 

  • Liu C, Liu Y, Guo K, Fan D, Li G, Zheng Y, Yu L, Yang R (2011) Effect of drought on pigments, osmotic adjustment and antioxydant enzymes in six woody plant species in karst habitats of south western China. Environ Exp Bot 71:174–183

    Article  CAS  Google Scholar 

  • Martinez-Viveros O, Jorquera MA, Crowley DE, Gajardo G, Mora ML (2010) Mechanisms and practical considerations involved in plant gowth promotion by Rhizobacteria. J Soil Sci Plant Nutr 10:293–319

    Article  Google Scholar 

  • Mayak S, Tirosh T, Glick BR (2004) Plant growth promoting bacteria confere resistance in tomato plants to salt stress. Plant Physiol Bioch 42:565–572

    Article  CAS  Google Scholar 

  • McReady RM, Guggoz J, Silver V, Owensh S (1950) Determination of starch and amylase in vegetables. Anal Chem 22:1156–1160

    Article  Google Scholar 

  • Mezni M, Albouchi A, Bizid E, Hamza M (2010) Mineral uptake, organic osmotic contents and water balance in alfalfa under salt stress. J Phytol 2:01–12

    Google Scholar 

  • Monirifar H, Barghi M (2009) Identification and selection for salt tolerance in alfalfa (Medicago sativa L.) ecotypes via physiological traits. Not Sci Biol 1:63–66

    CAS  Google Scholar 

  • Munné-Bosch S, Penulas J (2003) Photo and antioxydative protection during summer leaf senescence in Pistacia lentiscus L. grown under mediterranean field conditions. Ann Bot 92:385–391

    Article  PubMed Central  PubMed  Google Scholar 

  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681

    Article  CAS  PubMed  Google Scholar 

  • Nabizadeh E, Jalilnejad N, Armakani M (2011) Effect of salinity on growth and nitrogen fixation of alfalfa (Medicago sativa L.). World Appl Sci J 13: 1895-1900

  • Perez –Alfocea F, Estan F, Caro M, Balarin MC (1993) Response of tomato cultivars to salinity. Plant Soil 150:203–211

  • Pitman MG, Lauchli A (2002) Global impact of salinity and agricultural ecosystem. In: Lauchli A, Luttge U (eds) Salinity: environment –plants-molecules. Kluwer Academic Publishers, Dordrecht, pp 3–20

    Google Scholar 

  • Platten JD, Egdane JA, Ismail AM (2013) Salinity tolerance, Na + exclusion and allele miing of HKT1:5 in Oryza sativa and O.glaberrima: many source, many genes, one mechanism? BMC Plant Biol 13:32

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Saadallah K, Drevon JJ, Abdelly C (2001) Nodulation et croissance nodulaire chez le haricot (Phaseolus vulgaris) sous contrainte saline. Agronomie 21:627–634

    Article  Google Scholar 

  • Sandhya V, Ali SZ, Grover M, Reddy G, Venkateswarlu B (2010) Effect of plant growth promoting Pseudomonas spp. on compatible solutes, antioxidant status and plant growth of maize under drought stress. Plant Growth Regul 62:21–30

    Article  CAS  Google Scholar 

  • Sandhya V, Ali SZ, Grover M, Reddy G, Bandi V (2011) Drought tolerant plant growth promoting Bacillus spp: effect on growth, osmolytes and antioxidant status of maize under drought stress. J Plant Interact 6:1–14

    Article  Google Scholar 

  • Serradj R, Drevon JJ (1998) Effects of salinity and nitrogen source on growth and nitrogen fixation in alfalfa. J Plant Nutr 21:1805–1818

    Article  Google Scholar 

  • Shannon MC (1997) Adaptation of plants to salinity. Adv Agron 60:75–120

    Article  Google Scholar 

  • Shukla PP, Agarwal PK, Jha B (2012) Improved salinity tolerance of Arachis hypogeal L. by the interaction of halotolerant plant growth promoting rhizobacteria. J Plant Growth Regul 31:195–206

    Article  CAS  Google Scholar 

  • Talaouizte A, Moyse A, Champigny ML (1989) Bases physiologiques de la nutrition nitrique des végétaux supérieurs. I. Absorption de NO3. Ann. Biol. 28:233–254

    Google Scholar 

  • Tiwari TN, Singh BB (1991) Stress studies in lentil (Lens esculenta Moench). II. Sodicity induced changes in chlorophyll, nitrate, nitrite reductase, nucleic acids, proline, yield and yield component in lentil. Plant Soil 35:225–250

    Article  Google Scholar 

  • Troll W, Lindsey J (1954) A photometric method for the determination of proline. J Biol Chem 215:655–660

    Google Scholar 

  • Upadhyay SK, Singh JS, Saxena AK, Singh DP (2012) Impact of PGPR inoculation on growth and antioxydant status of wheat under saline conditions. Plant Biol 14:605–611

    Article  CAS  PubMed  Google Scholar 

  • Vincent JN (1970) A manual for the practical study handbook N°15. Blakwell, Oxford, p 164

    Google Scholar 

  • Wang WB, Kim YH, Lee HS, Kim K, Deng XP, Kwak SS (2009) Analysis of antioxidant enzyme activity during germination of alfalfa under salt and drought stresses. Plant physiol. Bioch 47:570–577

    Article  CAS  Google Scholar 

  • Wang X, Chen W, Zhou Y, Han J, Zhao J, Shi D, Yang C (2012) Comparison of adaptive strategies of alfalfa (Medicago sativa L.) to salt and alkali stress. Aust J Crop Sci 6:309–315

    CAS  Google Scholar 

  • Wanichananan P, Kirdmanee C, Vutiyano C (2003) Effect of salinity on biochemical and physiological characteristics in correlation to selection of salt tolerance in aromatic rice (Oryza sativa L.). Science Asia 29:333–339

    Article  CAS  Google Scholar 

  • Wu Y, Hu Y, Xu G (2009) Interactive effect of potassium and sodium on root growth and expression of K/Na transporter gene in rice. Plant Growth Regul 57:271–280

    Article  CAS  Google Scholar 

  • Xue Z, Zhao S, Gao H, Sun S (2014) The salt resistance of wild soybean (Glycine soja Sieb. et Zucc. ZYD 03262) under NaCl stress is mainly determined by Na + distribution in the plant. Acta Physiol Plant 36:61–70

    Article  CAS  Google Scholar 

  • Yang P, Zhang P, Li B, Hu T (2013) Effect of nodules on dehydration response in alfalfa (Medicago sativa L.). Environ Exper Bot 86:29–34

    Article  CAS  Google Scholar 

  • Yildirim E, Turan M, Donmez MF (2008) Mitigation of salt stress in radish (Raphanus sativus L.) by plant growth promoting rhizobacteria. Rom Biotech Lett 13:3933–3943

    Google Scholar 

  • Yildirim E, Turan M, Ekinci M, Dursun A, Cakmakci R (2011) Plant growth promoting rhizobacteria ameliorate deleterious effect of salt stress on lettuce. Sci Res Essays 6:4389–4396

    Google Scholar 

  • Yousfi N, Slama I, Abdelly C (2012) Phenology, leaf gas exchange, growth and seed yield in contrasting Medicago truncatula and Medicago laciniata populations during prolonged water deficit and recovery. Botany 90:79–91

    Article  Google Scholar 

  • Zaman B, Niazi BH, Athar M, Ahmad M (2005) Response of wheat plants to sodium and calcium ion interaction under saline environment. Int J Environ Sci Te 2:7–12

    Article  CAS  Google Scholar 

  • Zhang F, Dashti N, Hynes RK, Smith DL (1996) Plant growth promoting rhizobacteria and soybean (Glycine max L. Merr). Nodulation and nitrogen fixation at suboptimal root zone temperatures. Ann Bot 77:453–459

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nassima Baha.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baha, N., Bekki, A. An Approach of Improving Plant Salt Tolerance of Lucerne (Medicago sativa) Grown Under Salt Stress: Use of Bio-inoculants. J Plant Growth Regul 34, 169–182 (2015). https://doi.org/10.1007/s00344-014-9455-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00344-014-9455-8

Keywords

Navigation