Skip to main content
Log in

Carbohydrates Modulate the In Vitro Growth of Olive Microshoots. I. The Analysis of Shoot Growth and Branching Patterns

  • Published:
Journal of Plant Growth Regulation Aims and scope Submit manuscript

Abstract

The rate of microshoot proliferation during the micropropagation of olive (Olea europaea L.) plants is limited by the low rates of both bud sprouting and growth of secondary shoots following subculturing. The aim of this study was to determine (1) the effects of sucrose and mannitol on shoot growth, (2) whether either of these sugars modifies the pattern of shoot development of the explants, and (3) the influence of apical dominance on explant development. Working with single-node microcuttings of Olea europaea L. cv. Maurino with two opposite axillary buds, we added 17, 34, or 68 g L−1 of sucrose or mannitol to the medium as the primary carbon source. Shoot development was classified as either (a) an outgrowth of the first bud on an explant (shoot-type A), (b) an outgrowth of the second bud (shoot-type B), or (c) an outgrowth of an axillary bud on either an A- or B-type shoot (shoot-type C). Explant survival, fresh-mass production, and patterns of shoot development were influenced by the type and concentration of sugar used. Mannitol promoted the sprouting and growth of A-, B-, and C-type shoots more than sucrose. The developmental responses observed indicate that the growth of axillary meristems of in vitro olive explants is not regulated by apical dominance. The results demonstrate that the sugar alcohol plays an important role in the developmental regulation of olive explants. Mannitol may also protect against detrimental effects associated with in vitro growth conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abebe T, Guenzi AC, Martin B, Cushman JC (2003) Tolerance of mannitol accumulating transgenic wheat to water stress and salinity. Plant Physiol 131:1748–1755

    Article  PubMed  CAS  Google Scholar 

  • Ben-Hayyim G, Neumann H (1983) Stimulatory effect of glycerol on growth and somatic embryogenesis in citrus callus culture. Z Pflanzenphysiol Bd 110:331–337

    CAS  Google Scholar 

  • Cañas LA, Avila J, Vicente M, Bendabis A (1992) Micropropagation of Olive (Olea europaea L.). In: Bajaj YPS (ed) High-Tech and Micropropagation II. Biotechnology in Agriculture and Forestry, vol 18. Springer, New York, pp 493–505

    Chapter  Google Scholar 

  • Cassells AC, Joyce SM, O’Herlihy EA, Perez-Sanz MJ, Walsh C (2003) Stress and quality in in vitro culture. Acta Hortic 625:153–164

    Google Scholar 

  • Chaari-Rkhis A, Trigui A, Drira N (1999) Micropropagation of Tunisian cultivars olive trees: preliminary results. Acta Hortic 474:79–81

    Google Scholar 

  • Chauvin JE, Salesses G (1988) Effect du fructose sur la micropropagation du châtaignier Castenea sp. C R Acad Sci III 306:207–212

    CAS  Google Scholar 

  • Cline M (1994) The role of hormones and apical dominance: new approaches to an old problem in plant development. Physiol Plant 90:230–237

    Article  CAS  Google Scholar 

  • Cline MG, Harrington CA (2007) Apical dominance and apical control in multiple flushing of temperate woody species. Can J For Res 37:74–83

    Article  Google Scholar 

  • Conde C, Silva P, Agasse A, Lemoine R, Delrot S, Tavares R, Geròs H (2007) Utilization and transport of mannitol in Olea europaea and implications for salt stress tolerance. Plant Cell Physiol 48:42–53

    Article  PubMed  CAS  Google Scholar 

  • Conde A, Silva P, Agasse A, Conde C, Geròs H (2011) Mannitol transport and mannitol dehydrogenase activities are coordinated in Olea europaea under salt and osmotic stresses. Plant Cell Physiol 52:1766–1775

    Article  PubMed  CAS  Google Scholar 

  • Cozza R, Turco D, Briccoli Bati C, Bitonti B (1997) Influence of growth medium on mineral composition and leaf histology in microprpagated plantlets of Olea europaea. Plant Cell Tiss Organ Cult 51:215–223

    Article  CAS  Google Scholar 

  • Faure O, Diemer F, Moja S, Jullien F (1998) Mannitol and thidiazuron improve in vitro shoot regeneration from spearmint and peppermint leaf disks. Plant Cell, Tissue Organ Cult 52:209–212

    Article  CAS  Google Scholar 

  • Flora LJ, Madore MA (1993) Stachyose and mannitol transport in olive (Olea europea L.). Planta 189:484–490

    Article  CAS  Google Scholar 

  • Gaspar T, Frank T, Bisbis B, Kevers C, Jouve L, Hausman JF, Dommes J (2002) Concepts in plant stress physiology. Application to plant tissue cultures. Plant Growth Regul 37:263–285

    Article  CAS  Google Scholar 

  • Grigoriadou K, Vasilakakis M, Eleftheriou EP (2002) In vitro propagation of Greek olive cultivar ‘Chondrolia Chalkidikis’. Plant Cell Tissue Org Cult 71:47–54

    Article  CAS  Google Scholar 

  • Hillman J (1984) Apical dominance. In: Wilkins M (ed) Advanced plant physiology. Pitman, London, pp 127–148

    Google Scholar 

  • Leva AR (2011) Innovative and rapid protocol for ex vitro rooting of olive microcuttings. Cent Eur J Biol 6:352–358

    Article  Google Scholar 

  • Leva AR, Petruccelli R, Bartolini G (1994) Mannitol in vitro culture of Olea europaea L. (cv Maurino). Acta Hortic 356:43–46

    Google Scholar 

  • Leva AR, Petruccelli, R, Muleo R, Goretti R, Bartolini G (1995) Influence of trophic, regulatory factors, and of medium components on “in vitro” culture of some olive cultivars. In: Lombardo N, Iannotta, N, Briccoli Bati C (eds), L’Olivicoltura Mediterranea: Stato e Prospettive della Coltura e della Ricerca. Istituto Sperimentale per l’Olivicoltura, Rende, Cosenza, Italy, 26–28 gennaio, pp 239–248 [in Italian]

  • Leva AR, Petruccelli R, Polsinelli L (2004) In vitro olive propagation: from the laboratory to the production line. OLIVAE No. 101, pp 18–26

  • Leva AR, Zerilli V, Caruso T, Masia A (2006) Oxidative stress in olive in vitro culture: effects on organized development and mass propagation of Biancolilla and Cerasuola cvs. In: Caruso T, Motisi A (eds), Proceedings of Olivebioteq Biotechnology and Quality of Olive Tree Products around Mediterranean Basin, Mazzara del Vallo, Marsala, Italy, 5–10 November, pp 327–334

  • Leyser O (2005) The fall and rise of apical dominance. Curr Opin Genet Dev 15:468–471

    Article  PubMed  CAS  Google Scholar 

  • Lucchesini M, Mensuali-Sodi A (2004) Influence of medium composition and vessel ventilation on in vitro propagation of Phillyrea latifolia L. Sci Hortic (Amsterdam) 100:117–125

    Article  CAS  Google Scholar 

  • Marino G, Bertazza GP, Magnanini E, Doro Altan A (1993) Comparative effects of sorbitol and sucrose as main carbon energy sources in micropropagation of apricot. Plant Cell, Tissue Organ Cult 34:235–244

    Article  CAS  Google Scholar 

  • Mendoza-de Gyves E, Mira FR, Ruiu F, Rugini E (2008) Stimulation of node and lateral shoot formation in micropropagation of olive (Olea europaea L.) by using dikegulac. Plant Cell, Tissue Organ Cult 92:233–238

    Article  CAS  Google Scholar 

  • Oka S, Ohyama K (1986) Mulberry (Morus alba L.). In: Bajaj YP (ed) Trees I. Biotechnology in Agriculture and Forestry, vol 10. Springer, New York, pp 384–392

    Google Scholar 

  • Pruski K, Kozai T, Lewis T, Astatkie T, Nowak J (2000) Sucrose and light effects on in vitro cultures of potato (Solanum tuberosum L.), chokecherry (Prunus virginiana L.) and Saskatoon berry (Amelanchier alnifolia Nutt.) during low temperature storage. Plant Cell, Tissue Organ Cult 63:215–221

    Article  CAS  Google Scholar 

  • Pua EC, Chong C (1985) Regulation of in vitro shoot and root regeneration in “Macspur” apple by sorbitol (d-glucitol) and related carbon sources. J Am Soc Hortic Sci 110:705–709

    CAS  Google Scholar 

  • Rejšková A, Patková L, Stodůlková E, Lipavská H (2007) The effect of abiotic stresses on carbohydrate status of olive shoots (Olea europaea L.) under in vitro conditions. J Plant Physiol 164:174–184

    Article  PubMed  Google Scholar 

  • Romano A, Noronha C, Martins-Loução MA (1995) Role of carbohydrates in micropropagation of cork oak. Plant Cell, Tissue Organ Cult 40:159–167

    Article  CAS  Google Scholar 

  • Roussos PA, Pontikis CA (2002) In vitro propagation of olive (Olea europaea L.) cv. Koroneiki. Plant Growth Regul 37:295–304

    Article  CAS  Google Scholar 

  • Rugini E, Fedeli E (1990) Olive (Olea europaea L.) as an oilseed crop. In: Bajaj YPS (ed) Legumes and oilseed crops I. Biotechnology in Agriculture and Forestry, vol 10. Springer, New York, pp 593–641

    Chapter  Google Scholar 

  • Sharma KD, Rathour R, Sharma R, Goel S, Sharma TR, Singh BM (2008) In vitro cormlet development in Crocus sativus. Biol Plant 52:709–712

    Article  CAS  Google Scholar 

  • Sickler CM, Gerald E, Kiirats O, Gao Z, Loescher W (2007) Response of mannitol-producing Arabidopsis thaliana to abiotic stress. Funct Plant Biol 34:382–391

    Article  CAS  Google Scholar 

  • Smeekens S (2000) Sugar-induced signal transduction in plants. Annu Rev Plant Physiol Plant Mol Biol 51:49–81

    Article  PubMed  CAS  Google Scholar 

  • Walter KE, Skoog FT (1966) Nutritional requirements of Fraxinus callus cultures. Am J Bot 53:263–269

    Article  Google Scholar 

  • Welander M, Welander NT, Brackman AS (1989) Regulation of in vitro shoot multiplication in Syringa, Alnus and Malus by different carbon sources. J Hortic Sci 64:361–366

    CAS  Google Scholar 

  • Zacchini M, De Agazio M (2004) Micropropagation of a local olive cultivar for germplasm preservation. Biol Plant 48:589–592

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to AnnaRita Leva.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leva, A., Sadeghi, H. & Petruccelli, R. Carbohydrates Modulate the In Vitro Growth of Olive Microshoots. I. The Analysis of Shoot Growth and Branching Patterns. J Plant Growth Regul 32, 53–60 (2013). https://doi.org/10.1007/s00344-012-9275-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00344-012-9275-7

Keywords

Navigation