Skip to main content
Log in

Contrasting Effects of GA3 Treatments on Tomato Plants Exposed to Increasing Salinity

  • Published:
Journal of Plant Growth Regulation Aims and scope Submit manuscript

Abstract

The role of plant hormones under saline stress is critical in modulating physiological responses that will eventually lead to adaptation to an unfavorable environment. Nevertheless, the functional level of plant hormones, and their relative tissue concentration, may have a different impact on plant growth and stress tolerance at increasing salinity of the root environment. Vigorous plant growth may counteract the negative effects of salinization. In contrast, low gibberellin (GA) levels have been associated with reduced growth in response to salinity. Based on these facts and considering that the physiological basis of the cause-effect relationship between functional growth control and stress adaptation/survival is still a matter of debate, we hypothesized that exogenous applications of the plant hormone GA3 may compensate for the salt-induced growth deficiency and consequently facilitate tomato plant adaptation to a saline environment. GA3 application (0 or 100 mg GA3 l−1) was compared under four salinity levels, obtained by adding equal increments of NaCl:CaCl2 (2:1 molar basis) (EC = 2.5, 6.8, 11.7, 16.7 dS m−1) to the nutrient solution. GA3 treatment reduced stomatal resistance and enhanced plant water use at low salinity. These responses were associated with an increased number of fruit per plant at harvest. However, moderate and high salinity nullified these differences. The fruit carotenoid level was generally lower in GA3-treated plants, indicating either an inhibitory effect of GA3 treatment on carotenoid biosynthesis or a reduced perception of the stress environment by GA3-treated tomato plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Achard P, Cheng H, De Grauwe L, Decat J, Schoutteten H, Moritz T, Van Der Straeten D, Peng J, Harberd NP (2006) Integration of plant responses to environmentally activated phytohormonal signals. Science 311:91–94

    Article  CAS  PubMed  Google Scholar 

  • Botella-Pavia P, Besumbes O, Phillips MA, Carretero-Paulet L, Boronat A, Rodriguez-Concepcion M (2004) Regulation of carotenoid biosynthesis in plants: evidence for a key role of hydroxymethylbutenyl diphosphate reductase in controlling the supply of plastidial isoprenoid precursors. Plant J 40:188–199

    Article  CAS  PubMed  Google Scholar 

  • Dalton FN, Maggio A, Piccinni G (2000) Simulation of shoot chloride accumulation: separation of physical and biochemical processes governing plant salt tolerance. Plant Soil 219:1–11

    Article  CAS  Google Scholar 

  • De Pascale S, Maggio A, Fogliano V, Ambrosino P, Ritieni A (2001) Irrigation with saline water improves carotenoids content and antioxidant activity of tomato. J Hortic Sci Biotechnol 7(4):447–453

    Google Scholar 

  • De Pascale S, Martino A, Raimondi G, Maggio A (2007) Comparative analysis of water and salt stress-induced modifications of quality parameters in cherry tomato. J Hort Sci Biotechnol 82:283–289

    Google Scholar 

  • Dumas Y, Dadomo M, Di Lucca G, Grolier P (2003) Effects of environmental factors and agricultural techniques on antioxidant content of tomatoes. J Sci Food Agric 83:369–382

    Article  CAS  Google Scholar 

  • Flowers TJ (1999) Salinization and horticultural production. Sci Hort 78:1–4

    Google Scholar 

  • Gubler F, Kalla R, Roberts JK, Jacobsen JV (1995) Gibberellin-regulated expression of a myb gene in barley aleurone cells: evidence for MYB transactivation of a high-pI α-amylase gene promoter. Plant Cell 7:1879–1891

    Article  CAS  PubMed  Google Scholar 

  • Hasegawa PM, Bressan RA, Zhu JK, Bohnert HJ (2000) Plant cellular and molecular responses to high salinity. Annu Rev Plant Physiol Plant Mol Biol 51:463–499

    Article  CAS  PubMed  Google Scholar 

  • Hedden P, Proebsting WM (1999) Genetic analysis of gibberellin biosynthesis. Plant Physiol 119:365–370

    Article  CAS  PubMed  Google Scholar 

  • Hsiao TC (1973) Plant response to water stress. Annu Rev Plant Physiol Plant Mol Biol 24:519–570

    CAS  Google Scholar 

  • Kaya C, Levent Tuna A, Alves A (2006) Gibberellic acid improves water deficit tolerance in maize plants. Acta Physiol Plantarum 4:331–337

    Article  Google Scholar 

  • Kelen M, Demiralay EC, Sen S, Özkan G (2004) Separation of abscisic acid, indole-3-acetic acid, gibberellic acid in 99 R (Vitis berlandieri, Vitis rupestris) and rose oil (Rosa damascena) by reversed phase liquid chromatography. Turk J Chem 28:603–610

    CAS  Google Scholar 

  • Kopsell DA, Kopsell DE (2006) Accumulation and bioavailability of dietary carotenoids in vegetable crops. Trends Plant Sci 10:499–507

    Article  Google Scholar 

  • Leonardi C, Ambrosino P, Esposito F, Fogliano V (2000) Antioxidative activity and carotenoid and tomatine contents in different typologies of fresh consumption tomatoes. J Agric Food Chem 48:4723–4727

    Article  CAS  PubMed  Google Scholar 

  • Levent Tuna A, Kaya C, Dikilitas M, Higgs D (2008) The combined effects of gibberellic acid and salinity on some antioxidant enzyme activities, plant growth parameters and nutritional status in maize plants. Environ Exp Bot 62:1–9

    Article  Google Scholar 

  • Maas EV, Hoffman GJ (1977) Crop salt tolerance. J Irrig Drain Div ASCE 103:115–134

    Google Scholar 

  • Maggio A, Matsumoto T, Hasegawa PM, Pardo JM, Bressan RA (2002) The long and winding road to halotolerance genes. In: Lauchli A, Luttge U (eds) Salinity: environment-plants-molecules. Kluwer Academic Publishers, Dordrecht, The Netherlands, pp 505–533

    Google Scholar 

  • Maggio A, Raimondi G, Martino A, De Pascale S (2007) Salt stress response in tomato beyond the salinity tolerance threshold. Environ Exp Bot 59:276–282

    Article  CAS  Google Scholar 

  • Magome H, Yamaguchi S, Hanada A, Kamiya Y, Oda K (2004) dwarf and delayed-flowering 1, a novel Arabidopsis mutant deficient in gibberellin biosynthesis because of overexpression of a putative AP2 transcription factor. Plant J 37:720–729

    Article  CAS  PubMed  Google Scholar 

  • Magome H, Yamaguchi S, Hanada A, Kamiya Y, Oda K (2008) The DDF1 transcriptional activator upregulates expression of a gibberellin-deactivating gene, GA2ox7, under high-salinity stress in Arabidopsis. Plant J 56:613–626

    Article  CAS  PubMed  Google Scholar 

  • Munns R, James RA, Lauchli A (2006) Approaches to increasing the salt tolerance of wheat and other cereals. J Exp Bot 57:1025–1043

    Article  CAS  PubMed  Google Scholar 

  • Nemhauser JL, Hong FX, Chory J (2006) Different plant hormones regulate similar processes through largely nonoverlapping transcriptional responses. Cell 126:467–475

    Article  CAS  PubMed  Google Scholar 

  • Olszewski N, Tai-Ping S, Gubler F (2002) Gibberellin signaling: biosynthesis, catabolism, and response pathways. Plant Cell 14:61–80

    Google Scholar 

  • Razem FA, Baron K, Hill RD (2006) Turning on gibberellin and abscisic acid signaling. Curr Opin Plant Biol 9:454–459

    Article  CAS  PubMed  Google Scholar 

  • Ren H, Zhihui G, Lin C, Kaifa W, Jing L, Yijuan F, William JD, Wensuo J, Jianhua Z (2007) Dynamic analysis of ABA accumulation in relation to the rate of ABA catabolism in maize tissues under water deficit. J Exp Bot 58:211–219

    Article  CAS  PubMed  Google Scholar 

  • Rogers JC, Rogers SW (1992) Definition and functional implications of gibberellin and abscisic acid cis-acting hormone response complexes. Plant Cell 4:1443–1451

    Article  CAS  PubMed  Google Scholar 

  • Ross J, O’Neill D (2001) New interactions between classical plant hormones. Trends Plant Sci 6:2–4

    Article  CAS  PubMed  Google Scholar 

  • Ruggiero B, Koiwa H, Manabe Y, Quist TM, Inan G, Saccardo F, Joly RJ, Hasegawa PM, Bressan RA, Maggio A (2004) Uncoupling the effects of ABA on plant growth and water relations: analysis of sto1/nced3, ABA deficient salt stress tolerant mutant in Arabidopsis thaliana. Plant Physiol 136:3134–3147

    Article  CAS  PubMed  Google Scholar 

  • Slavik B (1974) Methods of study of plant water relations. Ecological studies 9. Academy of Science, Springer-Verlag, Prague, New York, p 449

    Google Scholar 

  • Verslues PE, Zhu JK (2005) Before and beyond ABA: upstream sensing and internal signals that determine ABA accumulation and response under abiotic stress. Biochem Soc Trans 33:375–379

    Article  CAS  PubMed  Google Scholar 

  • Walinga I, Van Der Lee JJ, Houba VJG, van Vark V, Novazamsky I (1995) Plant analysis manual. Kluwer Academic Publishers, Dordrecht, The Netherlands, p 247

    Google Scholar 

  • Weiss D, Ori N (2007) Mechanisms of cross talk between gibberellin and other hormones. Plant Physiol 144:1240–1246

    Article  CAS  PubMed  Google Scholar 

  • Wilkinson S, Davies WJ (2002) ABA-based chemical signalling: the co-ordination of responses to stress in plants. Plant Cell Environ 25:195–210

    Article  CAS  PubMed  Google Scholar 

  • Xie Z, Zhang ZL, Zou XL, Yang GX, Komatsu S, Shen QXJ (2006) Interactions of two abscisic-acid induced WRKY genes in repressing gibberellin signaling in aleurone cells. Plant J 46:231–242

    Article  CAS  PubMed  Google Scholar 

  • Zeevart JAD, Creelman RA (1988) Metabolism and physiology of abscisic acid. Annu Rev Plant Physiol 39:439–473

    Article  Google Scholar 

  • Zhu JH (2001) Cell signalling under salt, water and cold stress. Curr Opin Plant Biol 4:401–406

    Article  CAS  PubMed  Google Scholar 

  • Zhu JK (2002) Salt and drought stress signal transduction in plants. Annu Rev Plant Biol 53:247–273

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefania De Pascale.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maggio, A., Barbieri, G., Raimondi, G. et al. Contrasting Effects of GA3 Treatments on Tomato Plants Exposed to Increasing Salinity. J Plant Growth Regul 29, 63–72 (2010). https://doi.org/10.1007/s00344-009-9114-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00344-009-9114-7

Keywords

Navigation