Skip to main content
Log in

Identification and characterization of a DnaJ gene from red alga Pyropia yezoensis (Bangiales, Rhodophyta)

  • S4 Coastal Biotechnology
  • Published:
Chinese Journal of Oceanology and Limnology Aims and scope Submit manuscript

Abstract

Members of the DnaJ family are proteins that play a pivotal role in various cellular processes, such as protein folding, protein transport and cellular responses to stress. In the present study, we identified and characterized the full-length DnaJ cDNA sequence from expressed sequence tags of Pyropia yezoensis (PyDnaJ) via rapid identification of cDNA ends. This cDNA encoded a protein of 429 amino acids, which shared high sequence similarity with other identified DnaJ proteins, such as a heat shock protein 40/DnaJ from Pyropia haitanensis. The relative mRNA expression level of PyDnaJ was investigated using real-time PCR to determine its specific expression during the algal life cycle and during desiccation. The relative mRNA expression level in sporophytes was higher than that in gametophytes and significantly increased during the whole desiccation process. These results indicate that PyDnaJ is an authentic member of the DnaJ family in plants and red algae and might play a pivotal role in mitigating damage to P. yezoensis during desiccation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Asamizu E, Nakajima M, Kitade Y, Saga N, Nakamura Y, Tabata S. 2003. Comparison of RNA expression profiles between the two generations of Porphyra yezoensis (Rhodophyta), based on expressed sequence tag frequency analysis. Journal of Phycology, 39 (5): 923–930.

    Article  Google Scholar 

  • Behura S, Sahoo S, Srivastava V K. 2002. Porphyra-the economic seaweed as a new experimental system. Current Science, 83 (11): 1313.

    Google Scholar 

  • Buschmann A H, Correa J A, Westermeier R, Del Carmen Hernández-González M, Norambuena R. 2001. Red algal farming in Chile: a review. Aquaculture, 194 (3-4): 203–220.

    Article  Google Scholar 

  • Fan X, Wang G C, Li D M, Xu P, Shen S D. 2008. Study on early-stage development of conchospore in Porphyra yezoensis Ueda. Aquaculture, 278 (1-4): 143–149.

    Article  Google Scholar 

  • Fang X L, Fang Y J, Hu S N, Wang G C. 2007. Generation and analysis of 5318 expressed sequence tags from the filamentous sporophyte of Porphyra haitanensis (Rhodophyta). Journal of Phycology, 43 (6): 1287–1294.

    Article  Google Scholar 

  • Feder M E, Hofmann G E. 1999. Heat-shock proteins, molecular chaperones, and the stress response: evolutionary and ecological physiology. Annual Review of Physiology, 61: 243–282.

    Article  Google Scholar 

  • Israel A. 2010. The extreme environments of Porphyra, a fast growing and edible red marine macroalga. In: Seckbach J, Chapman D J eds. Red Algae in the Genomic Age. Springer, Netherlands. p.61–75.

    Chapter  Google Scholar 

  • Kitade Y, Taguchi G, Shin J-A, Saga N. 1998. Porphyra monospore system (Bangiales, Rhodophyta): a model for the developmental biology of marine plants. Phycological Research, 46 (1): 17–20.

    Article  Google Scholar 

  • Kültz D. 2005. Molecular and evolutionary basis of the cellular stress response. Annu. Rev. Physiol., 67: 225–257.

    Article  Google Scholar 

  • Kumar M, Gupta V, Trivedi N, Kumari P, Bijo A J, Reddy C R K, Jha B. 2011. Desiccation induced oxidative stress and its biochemical responses in intertidal red alga Gracilaria corticata (Gracilariales, Rhodophyta). Environmental and Experimental Botany, 72 (2): 194–201.

    Article  Google Scholar 

  • Kurepa J, Wang S H, Li Y, Smalle J. 2009. Proteasome regulation, plant growth and stress tolerance. Plant Signaling & Behavior, 4 (10): 924–927.

    Article  Google Scholar 

  • Langer T, Lu C, Echols H, Flanagan J, Hayer M K, Hartl F U. 1992. Successive action of DnaK, DnaJ and GroEL along the pathway of chaperone-mediated protein folding. Nature, 356 (6371): 683–689.

    Article  Google Scholar 

  • Lee E K, Seo S B, Kim T H, Sung S K, An G, Lee C H, Kim Y J. 2000. Analysis of expressed sequence tags of Porphyra yezoensis. Molecules and Cells, 10 (3): 338–342.

    Google Scholar 

  • Li X C, Xing Y Z, Jiang X, Qiao J, Tan H L, Tian Y, Zhou B. 2012. Identification and characterization of the catalase gene PyCAT from the red alga P yropia yezoensis (Bangiales, Rhodophyta). Journal of Phycology, 48 (3): 664–669.

    Article  Google Scholar 

  • Livak K J, Schmittgen T D. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2-C T method. Methods, 25 (4): 402–408.

    Article  Google Scholar 

  • Nikaido I, Asamizu E, Nakajima M, Nakamura Y, Saga N, Tabata S. 2000. Generation of 10, 154 expressed sequence tags from a leafy gametophyte of a marine red alga, Porphyra yezoensis. DNA Research, 7 (3): 223–227.

    Article  Google Scholar 

  • Ohtsuka K, Hata M. 2000. Molecular chaperone function of mammalian Hsp70 and Hsp40-a review. International Journal of Hyperthermia, 16 (3): 231–245.

    Article  Google Scholar 

  • Qiu X B, Shao Y M, Miao S, Wang L. 2006. The diversity of the DnaJ/Hsp40 family, the crucial partners for Hsp70 chaperones. Cellular and Molecular Life Sciences, 63 (22): 2560–2570.

    Article  Google Scholar 

  • Rüdiger S, Schneider-Mergener J, Bukau B. 2001. Its substrate specificity characterizes the DnaJ co-chaperone as a scanning factor for the DnaK chaperone. The EMBO Journal, 20 (5): 1042–1050.

    Article  Google Scholar 

  • Sung D-Y, Kaplan F, Guy C L. 2001. Plant Hsp70 molecular chaperones: protein structure, gene family, expression and function. Physiologia Plantarum, 113 (4): 443–451.

    Article  Google Scholar 

  • Walter S, Buchner J. 2002. Molecular chaperones-cellular machines for protein folding. Angewandte Chemie International Edition, 41 (7): 1098–1113.

    Article  Google Scholar 

  • Wang M Q, Hu J J, Zhuang Y Y, Zhang L, Liu W, Mao Y X. 2007. In silico screening for microsatellite markers from expressed sequence tags of Porphyra yezoensis (Bangiales, Rhodophyta). Journal of Ocean University of China, 6 (2): 161–166.

    Article  Google Scholar 

  • Wang M Q, Mao Y X, Zhuang Y Y, Kong F N, Sui Z H. 2009. Cloning and analysis of calmodulin gene from Porphyra yezoensis Ueda (Bangiales, Rhodophyta). Journal of Ocean University of China, 8 (3): 247–253.

    Article  Google Scholar 

  • Wang M Q, Yang J L, Zhou Z, Qiu L M, Wang L L, Zhang H, Gao Y, Wang X Q, Zhang L, Zhao J M, Song L S. 2011. A primitive Toll-like receptor signaling pathway in mollusk Zhikong scallop Chlamys farreri. Developmental and Comparative Immunology, 35 (4): 511–520.

    Article  Google Scholar 

  • Zou D H, Gao K S. 2002. Effects of desiccation and CO2 concentrations on emersed photosynthesis in Porphyra haitanensis (Bangiales, Rhodophyta), a species farmed in China. European Journal of Phycology, 37 (4): 587–592.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bin Zhou  (周斌).

Additional information

Supported by the National Natural Science Foundation of China (No. 41476091)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, J., Li, X., Tang, X. et al. Identification and characterization of a DnaJ gene from red alga Pyropia yezoensis (Bangiales, Rhodophyta). Chin. J. Ocean. Limnol. 34, 405–411 (2016). https://doi.org/10.1007/s00343-015-4321-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00343-015-4321-5

Keywords

Navigation