Skip to main content
Log in

Effects of extratropical solar penetration on North Atlantic Ocean circulation and climate

  • Physics
  • Published:
Chinese Journal of Oceanology and Limnology Aims and scope Submit manuscript

Abstract

Effects of extratropical solar penetration on the North Atlantic Ocean circulation and climate are investigated using a coupled ocean-atmosphere model. In this model, solar penetration generates basinwide cooling and warming in summer and winter, respectively. Associated with SST changes, annual mean surface wind stress is intensified in both the subtropical and subpolar North Atlantic, which leads to acceleration of both subtropical and subpolar gyres. Owing to warming in the subtropics and significant saltiness in the subpolar region, potential density decreases (increases) in the subtropical (subpolar) North Atlantic. The north-south meridional density gradient is thereby enlarged, accelerating the Atlantic meridional overturning circulation (AMOC). In addition, solar penetration reduces stratification in the upper ocean and favors stronger vertical convection, which also contributes to acceleration of the AMOC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Bryan K, Cox M. 1967. A numerical investigation of the oceanic general circulation. Tellus, 19: 54–80.

    Article  Google Scholar 

  • Denman K. 1973. A time-dependent model of the upper ocean. J. Phys. Oceanogr., 3: 173–184.

    Article  Google Scholar 

  • Dickey T D, Simpson J J. 1983. The influence of optical water type on the diurnal response of the upper ocean. Tellus, 35B: 142–154.

    Article  Google Scholar 

  • Hughes T, Weaver A. 1994. Multiple equilibrium of an asymmetric two-basin model. J. Phys. Oceanogr., 24: 619–637.

    Article  Google Scholar 

  • Jacob R L. 1997. Low Frequency Variability in a Simulated Atmo1sphere Ocean System. Ph.D. thesis, University of Wisconsin-Madison. 155p.

    Google Scholar 

  • Kuhlbrodt T, Griesel A, Montoya M, Levermann A, Hofmann M, Rahmstorf S. 2007. On the driving processes of the Atlantic meridional overturning circulation. Rev. Geophys., 45: RG2001, http://dx.doi.org/10.1029/2004RG000166.

    Article  Google Scholar 

  • Liang X, Wu L. 2013. Effects of solar penetration on the annual cycle of sea surface temperature in the North Pacific. J. Geophys. Res. Oceans, 118: 2 793–2 801, http://dx.doi.org/10.1002/jgrc.20208.

    Article  Google Scholar 

  • Lin P, Liu H, Zhang X. 2007. Sensitivity of the upper ocean temperature and circulation in the Equatorial Pacific to solar radiation penetration, Adv. Atmos. Sci., 24: 765–780.

    Article  Google Scholar 

  • Liu H, Ma J, Lin P, Zhan H. 2012. Numerical study of the effects of ocean color on the sea surface temperature in the southeast tropical Indian Ocean: the role of the barrier layer, Environ. Res. Lett., 7: 024010, http://dx.doi.org/10.1088/1748-9326/7/2/024010.

    Article  Google Scholar 

  • Manizza M, Le Quere C, Waterson A J, Burtenhhuis E T. 2005. Biooptical feedbacks among phytoplankton, upper ocean physics and sea-ice in a global model, Geophys. Res. Lett., 32: L05603, http://dx.doi.org/10.1029/2004GL020778.

    Article  Google Scholar 

  • Manizza M, Le Quere C, Waterson A J, Burtenhhuis E T. 2008. Ocean biogeochemical response to phytoplankton-light feedback in a global model, J. Geophys. Res., 113, http://dx.doi.org/10.1029/2007JC004478.

  • Martin P J. 1985. Simulation of the mixed layer at OWS November and Papa with several models. J. Geophys. Res., 90: 903–916.

    Article  Google Scholar 

  • Mobley C D. 1994. Light and Water. Academic Press. 592p.

    Google Scholar 

  • Morel A, Antoine D. 1994. Heating rate within the upper ocean in relation to its biooptical state. J. Phys. Oceanogr., 24: 1 652–1 665.

    Article  Google Scholar 

  • Morel A. 1988. Optical modeling of the upper ocean in relation to its biogenous matter content (case Iwaters). J. Geophys. Res., 93: 1 652–1 665.

    Google Scholar 

  • Murtugudde R, Beauchamp J, McClain C R, Lewis M, Busalacchi A J. 2002. Effects of penetrative radiation on the upper tropical ocean circulation. J. Climate, 15: 470–486.

    Article  Google Scholar 

  • Murtugudde R, Signorini S, Christian J, Busalacchi A, McClain C, Picaut J. 1999. Ocean color variability of the tropical Indo-Pacific basin observed by SeaWiFS during 1997–98. J. Geophys. Res., 104: 18 351–18 366.

    Article  Google Scholar 

  • Nakamoto S, Kumar S P, Oberhuber J M, Ishizaka J, Muneyama K, Frouin R. 2001. Response of the equatorial Pacific to chlorophyll pigment in a mixed layer isopycnal ocean general circulation model. Geophys. Res. Lett., 28: 2 021–2 024.

    Article  Google Scholar 

  • Ohlmann J C, Siegel D, Washburn L. 1998. Radiant heating of the western equatorial Pacific during TOGA-COARE. J. Geophys. Res., 103: 5 379–5 395.

    Article  Google Scholar 

  • Ohlmann J C, Siegel D. 2000. Ocean radiant heating. Part II: Parameterizing solar radiation transmission through the upper ocean. J. Phys. Oceanogr., 30: 1 849–1 865.

    Article  Google Scholar 

  • Park Y G. 1999. The stability of thermohaline circulation in a two-box model. J. Phys. Oceanogr., 29: 3 101–3 110.

    Article  Google Scholar 

  • Paulson C A, Simpson J J. 1977. Irradiance measurements in the upper ocean. J. Phys. Oceanogr., 7: 952–956.

    Article  Google Scholar 

  • Rochford P A, Kara A B, Wallcraft A J, Arnone R A. 2002. Importance of solar subsurface heating in ocean general circulation models. J. Geophys. Res., 106: 30 923–30 938.

    Article  Google Scholar 

  • Scott J, Marotzke J, Stone P. 1999. Interhemispheric thermohaline circulation in a coupled box model. J. Phys. Oceanogr., 29: 351–365.

    Article  Google Scholar 

  • Simonot J-Y, Dollinger E, Treut H Le. 1988. Thermodynamicalbiological-optical coupling in the ocean mixed layer. J. Geophys. Res., 93: 8 193–8 202.

    Article  Google Scholar 

  • Simpson J J, Dickey T D. 1981. Alternative parameterization of downward irradiance and their dynamical significance. J. Phys. Oceanogr., 11: 876–882.

    Article  Google Scholar 

  • Stommel H. 1961. Thermohaline convection with two stable regimes of flow. Tellus, 13: 224–230.

    Article  Google Scholar 

  • Stouffer R, Coauthors. 2006. Investigating the causes of the response of the thermohaline circulation to past and future climate changes. J. Climate, 19: 1 365–1 387.

    Article  Google Scholar 

  • Sweeney C, Gnanadesikan A, Griffies S M, Harrison M J, Rosati A J, Samuels B L. 2005. Impacts of shortwave penetration depth on large-scale ocean circulation and heat transport. J. Phys. Oceanogr., 35: 1 103–1 119.

    Article  Google Scholar 

  • Talley L, Reid J, Robbins P. 2003. Date-based meridional overturning streamfunction for the global ocean. J. Climate, 16: 3 213–3 226.

    Article  Google Scholar 

  • Thorpe R B, Gregory J M, Johns T C, Wood R A, Mitchell J F B. 2001. Mechanisms determining the Atlantic thermohaline circulation response to greenhouse gas forcing in a non-flux-adjusted coupled climate model. J. Climate, 14: 3 102–3 116.

    Article  Google Scholar 

  • Wang C, Dong S, Munoz E. 2010. Seawater density variations in the North Atlantic and the Atlantic meridional overturning circulation, Clim. Dyn., http://dx.doi.org/10.1007/s00382-009-0560-5.

    Google Scholar 

  • Woods J D, Barkmann W, Horch A. 1984. Solar heating of the oceans—diurnal, seasonal and meridional variation. Quart. J. Roy. Meteor. Soc., 110: 633–656.

    Google Scholar 

  • Wu L, Li C, Yang C, Xie S P. 2007. Global teleconnections in response to a shutdown of the Atlantic meridional overturning circulation. J. Climate, 21: 3 002–3 019.

    Article  Google Scholar 

  • Wu L, Liu Z. 2002. Is tropical Atlantic variability driven by the North Atlantic Oscillation? Geophys. Res. Lett., 29: 1 653, http://dx.doi.org/10.1029/2002GL014939.

    Article  Google Scholar 

  • Wu L, Liu Z. 2005. North Atlantic decadal variability: air-sea coupling, oceanic memory, and potential northern hemisphere resonance. J. Climate, 18: 331–349.

    Article  Google Scholar 

  • Zaneveld J R, Spinrad R W. 1980. An arc tangent model of irradiance in the sea. J. Geophys. Res., 85: 4 919–4 922.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lixin Wu  (吴立新).

Additional information

Supported by the Key Project of National Natural Science Foundation of China (No. 41130859) and the Innovation Team Project (No. 40921004)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, X., Wu, L. Effects of extratropical solar penetration on North Atlantic Ocean circulation and climate. Chin. J. Ocean. Limnol. 33, 243–251 (2015). https://doi.org/10.1007/s00343-015-3343-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00343-015-3343-3

Keyword

Navigation