Skip to main content
Log in

Do physicochemical variables regulate the distribution of zooplankton communities in reservoirs dominated by filter-feeding carp?

  • Biology
  • Published:
Chinese Journal of Oceanology and Limnology Aims and scope Submit manuscript

Abstract

The temporal and spatial distributions of zooplankton communities in the upper, middle, and lower reaches of the Xin’anjiang Reservoir, Zhejiang, China, were investigated monthly, between 2009 and 2010. Silver carp (Hypophthalmichthys molitrix) and bighead carp (Aristichthys nobilis) dominated the pelagic fish community of this large, deep reservoir. Cladocerans were distributed evenly throughout the reservoir. Rotifers were mainly found in the upper reaches, while copepods tended to assemble in the lower reaches. The Pearson correlation analysis and stepwise multiple regression were used to identify the major physicochemical gradients influencing community variations. Zooplankton community distributions were influenced by water temperature, dissolved oxygen, phosphorus, nitrogen, and silicon. Excess nutrients, in particular silicon, stimulated rotifer growth. Based on these findings, it is possible to use rotifer density as a bioindicator of eutrophic status in deep reservoir ecosystems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Akin-Oriola G A. 2003. Zooplankton associations and environmental factors in Ogunpa and Ona Rivers, Nigeria. Revista de Biologia Tropical, 51: 391–398.

    Google Scholar 

  • Akopian M J G, Pourriot R.1999. A large reservoir as a source of zooplankton for the river: structure of the populations and influence of fish predation. Journal of Plankton Research, 21: 285–297.

    Article  Google Scholar 

  • Alonso C, Rocco Barriga V J P, Battini M A, Zagarese H. 2004. Surface avoidance by freshwater zooplankton: field evidence on the role of ultraviolet radiation. Limnology and Oceanography, 49: 225–232.

    Article  Google Scholar 

  • Arimoro O F, Oganah O A. 2010. Zooplankton community responses in a perturbed tropical stream in the niger delta, Nigeria. The Open Environmental and Biological Monitoring Journal, 3: 1–11.

    Article  Google Scholar 

  • Arnott S E, Vanni M J. 1993. Zooplankton assemblages in fishless bog lakes: influence of biotic and abiotic factors. Ecology, 74: 2 361–2 380.

    Article  Google Scholar 

  • Ban S, Burns C C, Chaudron Y, Christou E, Escribano R, Umani S F, Gasparini S, Ruiz F G, Hoffmeyer M, Ianora A, Kang H K, Laabir M, Lacoste A, Miralto A, Ning X, Poulet S, Rodriguez V, Runge J, Shi J, Starr M, Uye S I, Wang Y. 1997. The paradox of diatom-copepod interactions. Marine Ecology Progress Series, 157: 287–293.

    Article  Google Scholar 

  • Bollens S M, Frost B W. 1991. Diel vertical migration in zooplankton: rapid individual response to predators. Journal of Plankton Research, 13: 1 359–1 365.

    Article  Google Scholar 

  • Bottrell H H, Duncan A, Gliwicz Z M, Grygierek E, Herzig A, HillbrichtIlkowska A, Kurasawa H, Larsson P, Weglenska T. 1976. A review of some problems in zooplankton production studies. Norway Journal of Zoology, 24: 419–456.

    Google Scholar 

  • Boyd C E. 1990. Water quality in ponds for aquaculture. Alabama Agricultural Experiment Station, Auburn University, Alabama.

    Google Scholar 

  • Buskey J E. 2008. How does eutrophication affect the role of grazers in harmful algal bloom dynamics?. Harmful Algae, 152: 152–157.

    Article  Google Scholar 

  • Carvalho L. 1994. Top-down control of phytoplankton in a shallow hypertrophic lake: Little Mere (England) Hydrobiologia, 275: 53–63.

    Article  Google Scholar 

  • Chaudron Y, Poulet S A, Laabir M, Ianora A, Miralto A. 1996. Is hatching success of copepod eggs diatom density dependent?. Marine Ecology Progress Series, 144: 185–193.

    Article  Google Scholar 

  • Conde-Porcuna J M. 2000. Relative importance of competition with Daphnia (Cladocera) and nutrient limitation on Anuraeopsis (Rotifera) population dynamics in a laboratory study. Freshwater Biology, 44: 423–430.

    Article  Google Scholar 

  • Crisp T D. 1995. The ecological basis for the management of flows regulated by reservoir in the United Kingdom. In: Harper D M, Ferguson A J D eds. The Ecological Basis for River Management. J. Wiley & Sons, Chichester. p.93–103.

    Google Scholar 

  • Deyzel H P. 2004. The zooplankton and hyperbenthos of the Mngazana estuary with reference to two tidal creeks. University of Port Elizabeth.

    Google Scholar 

  • Domaizon I, Dévaux J. 1999. Impact of moderate silver carp biomass gradient on zooplankton communities in a eutrophic reservoir: consequences for the use of silver carp in biomanipulation. Académie des Sciences, 322: 621–628.

    Google Scholar 

  • Drenner R W, Hambright K D. 1987. Experimental study of size-selective phytoplankton grazing by a filter-feeding cichlid and cichlids effects on plankton community structure. Limnology and Oceanography, 32: 1 138–1 144.

    Article  Google Scholar 

  • Dufrene M, Legendre P. 1997. Species assemblages and indicator species: the need for a flexible asymmetrical approach. Ecological Monographs, 67: 345–366.

    Google Scholar 

  • Egge J K, Aksnes D L. 1992. Silicate as regulating nutrient in phytoplankton competition. Marine Ecology Progress Series, 83: 281–289.

    Article  Google Scholar 

  • Gilbert J J. 1988. Suppression of rotifer populations by Daphnia: a review of the evidence, the mechanisms, and the effects on zooplankton community structure. Limnology and Oceanography, 33: 1 286–1 303.

    Article  Google Scholar 

  • Gliwicz M J. 1986. Predation and the evolution of vertical migration in zooplankton. Nature, 320: 746–747.

    Article  Google Scholar 

  • Hart R C. 1988. Zooplankton feeding rates in relation to suspended sediment content: potential influences on community structure in a turbid reservoir. Freshwater Biology, 19: 123–139.

    Article  Google Scholar 

  • Holz J C, Hoagland K D. 1996. Experimental microcosm study of the effects of phosphorus reduction on plankton community structure. Canadian Journal of Fisheries and Aquatic Sciences, 53: 1 754–1 764.

    Article  Google Scholar 

  • Humborg D, Ittekot V, Cosiascu A, Bodungen B. V. 1997. Effect of Danube River dam on Black Sea biogeochemistry and ecosystem structure. Nature, 386: 385–388.

    Article  Google Scholar 

  • Jack J D, Wickham S A, Toalson S, Gilbert J J. 1993. The effects of clays on freshwater plankton community: an enclosure experiment. Archiv. fur. Hydrobiologie, 127: 257–270.

    Google Scholar 

  • Jiang B Z, Du N S. 1979. Chinese Journal of animal (Arthopoda Crustacea Freshwater Cladocera). Science Press, Beijing.

    Google Scholar 

  • Kirk K L, Gilbert J J. 1990. Suspended clay and the population dynamics of planktonic rotifers and Cladocerans. Ecology, 71: 1 741–1 755.

    Article  Google Scholar 

  • Koste W. 1978. Rotatoria: Auflage. Gebrüder Borntroegers, Berlin. 673 pp.

    Google Scholar 

  • Kubar K, Agasild H T V, Ott I. 2005. Vertical distribution of zooplankton in a strongly stratified hypereutrophic lake. Hydrobiologia, 547: 151–162.

    Article  Google Scholar 

  • Lampert W, McCauley E, Manly B F J. 2003. Tradeoffs in the vertical distribution of zooplankton: ideal free distribution with costs?. Proceedings of the Royal Society of London, 270: 765–773.

    Article  Google Scholar 

  • Leibold M A. 1990. Resources and predators can affect the vertical distributions of zooplankton. Limnology and Oceanography, 35: 938–944.

    Article  Google Scholar 

  • Leventer H, Teltsch B. 1990. The contribution of silver carp (H. molitrix) to the biological control of Netofa reservoirs. Hydrobiologia, 191: 47–55.

    Article  Google Scholar 

  • Li P P. 2012. Ecological Stoichiometry of Silver and Bighead Carps and Their Driven Nutrient Recycling in Lake Qiandao. Shanghai Ocean University, Shanghai.

    Google Scholar 

  • Li Q G, Yu Z M. 2002. Community Structure of Zooplankton in Lake Qiandaohu. Acta Ecologica Sinica, 22: 156–162.

    Google Scholar 

  • Liu Q G, Chen M, Tong H, He G, Hong R, Chen L Q. 2004. Study on the possible cause of water blooming and the bloom-prevention technology in Lake Qiandaohu. Agricultural Sciences in China, 3: 627–633.

    Google Scholar 

  • Liu Q G, Chen Y, Li J L, Chen L Q. 2007. The food web structure and ecosystem properties of a filter-feeding carps dominated deep reservoir ecosystem. Ecological Modelling, 203: 279–289.

    Article  Google Scholar 

  • Liu Q G. 2005. Aquatic Environmental Protection Oriented Fishery in Lake Qiandaohu and Its Influences on Lake Ecosystem. East China Normal University, PhD thesis.

    Google Scholar 

  • Loose C J, Dawidowicz P. 1994. Trade-offs in diel vertical migration by zooplankton: the costs of predator avoidance. Ecology, 75: 2 255–2 263.

    Article  Google Scholar 

  • Lü H C, Wang F E, Chen Y X, Yu Z M, Fang Z F, Zhou G D. 2003. Multianalysis between chlorophyll-a and environmental factors in Qiandao Lake water. Chinese Journal of Applied Ecology, 14: 1 347–1 350.

    Google Scholar 

  • Ma H, Cui F, Liu Z, Fan Z, He W, Yin P. 2010 Effect of filterfeeding fish silver carp on phytoplankton species and size distribution in surface water: a field study in water works. Journal of Environmental Sciences, 22: 161–167.

    Article  Google Scholar 

  • Milligan A J, Morel F M M. 2002. A proton buffering role for silica in diatoms. Science, 297: 1 848–1 850.

    Article  Google Scholar 

  • Moss B, Beklioglu M, Carvalho L, Kilinc S, McGowan S, Stephen D. 1997. Vertically-challenged limnology: contrasts between deep and shallow lakes. Hydrobiologia, 342: 257–267.

    Article  Google Scholar 

  • Parsons T R, Maita Y, Lalli C M. 1984. A Manual of Chemical and Biological Methods for Seawater Analysis. Pergamon Press, Oxford.

    Google Scholar 

  • Paterson M. 1993. The distribution of micro-crustacea in the littoral zone of a freshwater lake. Hydrobiologia, 63: 73–183.

    Google Scholar 

  • Raven J A.1983. The transport and function of silicon in plants. Biological Reviews, 58: 179–207.

    Article  Google Scholar 

  • Sarvala J, Kankaala P, Zingel P, Arvola L. 1999. Zooplankton. In: Keskitalo J, Eloranta P eds. Limnology of Humic Waters. Backhuys Publishers, Leiden, The Netherlands, p.173–191.

    Google Scholar 

  • Sellami I, Guermazi W, Hamza A, Aleya L, Ayadi H. 2010. Seasonal dynamics of zooplankton community in four Mediterranean reservoirs in humid area (Beni Mtir: north of Tunisia) and semi arid area (Lakhmes, Nabhana and Sidi Saad: center of Tunisia). Journal of Thermal Biology, 35: 392–400.

    Article  Google Scholar 

  • Shen J R, Dai A Y, Zhang C Z. 1979. Chinese Journal of Animal (Freshwater Copepods). Science Press, Beijing.

    Google Scholar 

  • Shi W. 2010. An analysis of the spatial and temporal variation of zooplankton community structure and the correlation with influencing factors in Qiandao Lake. Shanghai Ocean University.

    Google Scholar 

  • Smith T E, Stevenson R J, Caraco N F, Cole J J. 1998. Changes in phytoplankton community structure during the zebra mussel (Dreissena polymorpha) invasion of the Hudson River (New York). Journal of Plankton Research, 20: 1 567–1 579.

    Article  Google Scholar 

  • Soetaert K, Van Rijswijk P. 1993. Spatial and temporal patterns of the zooplankton in the Westerschelde estuary. Marine Ecology Progress Series, 97: 47–59.

    Article  Google Scholar 

  • Starling F. 1993. Control of eutrophication by silver carp (Hypophthalmichthy molitrix) in the tropical paranoa reservoir (brasilia, Brazil): a mesocosm experiment. Hydrobiologia, 257: 143–152.

    Article  Google Scholar 

  • Sun C, Wang T, Sun S, Zhang F. 2006. Dynamic analysis of phytoplankton community characteristics in Daya Bay, China. Acta Ecologica Sinica, 26: 3 948–3 958.

    Article  Google Scholar 

  • Taylor V, Schulze R, Jewith G. 2000. Application of the Indicators of the hydrological alteration method to the Mkomazi River, Kwazulu Natal, South Africa. Journal of Aquatic Sciences, 28: 1–11.

    Article  Google Scholar 

  • Vörös L, Oldal I, Présing M, Balogh V K. 1997. Size-selective filtration and taxon-specific digestion of plankton algae by silver carp (hypophthalmichthy molitrix val.). Hydrobiologia, 342: 223–228.

    Article  Google Scholar 

  • Vorosmarty C J, Meybeck M, Fekene B, Sharma K. The potential impact of neo-castorization, on sediment transport by the global network of rivers. In: Walling D E, Probst J L eds. Human Impact on Erosion and Sedimentation Proceeding of the Rabat Symposium, Wallingford, Oxfordshire, UK, 1997. IAHS Publ.

    Google Scholar 

  • Wang J J. 1961. Chinese Journal of Freshwater Rotifer. Science Press, Beijing.

    Google Scholar 

  • Wang X Y, Wang L Q, Gai J J, Chen L S, Ren L P, Hong R H. 2010. Vertical distribution and diel vertical migration of planktonic crustaceans in Qiandao Lake. Chinese Journal of Zoology, 45: 118–127.

    Google Scholar 

  • Xie P. 2001. Gut content of bighead carp (Aristichthys nobilis) and the process and digestion of algal cells in the alimentary canal. Aquaculture, 195: 149–161.

    Article  Google Scholar 

  • Yusoff F M, Zubaidah M S, Matias H B, Kwan T S. 2002. Phytoplankton succession in intensive marine shrimp culture ponds treated with a commercial bacterial product. Aquaculture Research, 33: 269–278.

    Article  Google Scholar 

  • Zhang J, He Z. 1991. Handbook of Investigation on the Fishery and Natural Resources of Inland Waters. Agriculture Press, Beijing.

    Google Scholar 

  • Zhang Z S, Huang X F. 1991. The Methods for Plankton Studies. Science Press, Beijing.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qigen Liu  (刘其根).

Additional information

Supported by the Special Fund for Agro-Scientific Research in the Public Interest, the State Agriculture Ministry of China (No. 201303056), the National Natural Science Foundation of China (No. 31072218), the Shanghai City Board of Education Innovation Fund (No. 13YZ093), the Funding Scheme for Training Young Teachers in Colleges and Universities in Shanghai (No. ZZhy12001), and the Shanghai University Knowledge Service Platform Project (ZF1206)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hu, M., Yang, L. & Liu, Q. Do physicochemical variables regulate the distribution of zooplankton communities in reservoirs dominated by filter-feeding carp?. Chin. J. Ocean. Limnol. 32, 266–277 (2014). https://doi.org/10.1007/s00343-014-3123-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00343-014-3123-5

Keywords

Navigation