Skip to main content
Log in

From sea to land: assessment of the bio-transport of phosphorus by penguins in Antarctica

  • Chemistry
  • Published:
Chinese Journal of Oceanology and Limnology Aims and scope Submit manuscript

Abstract

In Antarctica, the marine ecosystem is dynamically interrelated with the terrestrial ecosystem. An example of the link between these two ecosystems is the biogeochemical cycle of phosphorus. Biovectors, such as penguins, transport phosphorus from sea to land, play a key role in this cycle. In this paper, we selected three colonies of penguins, the most important seabirds in Antarctica, and computed the annual quantity of phosphorus transferred from sea to land by these birds. Our results show that adult penguins from colonies at Ardley Island, the Vestfold Hills, and Ross Island could transfer phosphorus in the form of guano at up to 12 349, 167 036, and 97 841 kg/a, respectively, over their breeding period. These quantities are equivalent to an annual input of 3.96×109–1.63×1010 kg of seawater to the land of Antarctica. Finally, we discuss the impact of phosphorus on the ice-free areas of the Antarctica.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ainley D G, Ribic C A, Ballard G, Heath S, Gaffney I, Karl B J, Barton K J, Wilson P R, Webb S. 2004. Geographic structure of Adélie penguin populations: overlap in colonyspecific foraging areas. Ecol. Monogr., 74: 159–178.

    Article  Google Scholar 

  • Ainley D G. 2002. The Adélie Penguin: Bellwether of Climate Change. Columbia University Press, New York, USA.

    Google Scholar 

  • Atkinson A, Siegel V, Pakhomov E, Rothery P. 2004. Longterm decline in krill stock and increase in salps within the Southern Ocean. Nature, 432: 100–103.

    Article  Google Scholar 

  • Barbraud C, Weimerskirch H. 2006. Antarctic birds breed later in response to climate change. Proc. Natl. Acad. Sci. USA, 103: 6 248–6 251.

    Article  Google Scholar 

  • Bargagli R, Sanchez-Hernandez J C, Martella L, Monaci F. 1998. Mercury, cadmium and lead accumulation in Antarctic mosses growing along nutrient and moisture gradients. Polar. Biol., 19: 316–322.

    Article  Google Scholar 

  • Blais J M, Kimpe L E, McMahon D, Keatley B E, Mallory M L, Douglas M S V, Smol J P. 2005. Arctic seabirds transport marine-derived contaminants. Science, 309: 445–445.

    Article  Google Scholar 

  • Blais J M, Macdonald R W, Mackey D, Webster E, Harvey C, Smol J P. 2007. Biologically mediated transport of contaminants to aquatic systems. Environ. Sci. Technol., 41: 1 075–1 084.

    Article  Google Scholar 

  • Brimble S K, Blais J M, Kimpe L E, Mallory M L, Keatley B E, Douglas M S V, Smol J P. 2009. Bioenrichment of trace elements in a series of ponds near a northern fulmar (Fulmarus glacialis) colony at Cape Vera, Devon Island. Can. J. Fish. Aquat. Sci., 66: 949–958.

    Article  Google Scholar 

  • Ducklow H W, Baker K, Martinson D G, Quetin L B, Ross R M, Smith R C, Stammerjohn S E, Vernet M, Fraser W. 2007. Marine pelagic ecosystems: the West Antarctic Peninsula. Phil. Trans. R. Soc. B., 362: 67–94.

    Article  Google Scholar 

  • Emslie S D, Fraser W, Smith R C, Walker W. 1998. Abandoned penguin colonies and environmental change in the Palmer Station area, Anvers Island, Antarctic Peninsula. Antarct. Sci., 10: 257–268.

    Article  Google Scholar 

  • Fariña J M, Salazar S, Wallem K P, Witman J D, Ellis J C. 2003. Nutrient exchanges between marine and terrestrial ecosystems: the case of the Galapagos sea lion Zalophus wollebaecki. J. Anim. Ecol., 72: 873–887.

    Article  Google Scholar 

  • Green K, Johnstone G W. 1988. Changes in the diet of Adelie penguins breeding in east-Antarctica. Wildl. Res., 15: 103–110.

    Article  Google Scholar 

  • Hahn S, Bauer S, Klaassen M. 2007. Estimating the contribution of carnivorous waterbirds to nutrient loading in freshwater habitats. Freshwater Biol., 52: 2 421–2 433.

    Article  Google Scholar 

  • Han Z B, Pan J M, Hu C Y, Yu W, Xue B. 2010. Decomposition of organic carbon beneath euphotic zone in Prydz Bay, Antarctica. Chin. J. Polar. Res., 22: 254–261. (in Chinese with English abstract)

    Google Scholar 

  • Harrison S A. 2006. The Influence of Seabird-Derived Nutrients on Island Ecosystems in the Oligotrophic Marine Waters of South-Western Australia. Master degree thesis. School of Natural Sciences, Faculty of Computing, Health and Science Edith Cowan University.

    Google Scholar 

  • Hill S L, Murphy E J, Reid K, Trathan P N, Constable A J. 2006. Modelling Southern Ocean ecosystems: krill, the food-web, and the impacts of harvesting. Biol. Rev., 81: 581–608.

    Article  Google Scholar 

  • Hodson A, Heaton T, Langford H, Newsham K. 2010. Chemical weathering and solute export by meltwater in a maritime Antarctic glacier basin. Biogeochemistry, 98: 9–27.

    Article  Google Scholar 

  • Huang T, Sun L G, Wang Y H, Kong D M. 2011. Late Holocene Adélie penguin population dynamics at Zolotov Island, Vestfold Hills, Antarctica. J. Paleolimnol., 45: 273–285.

    Article  Google Scholar 

  • Huang T, Sun L G, Wang Y H, Liu X D, Zhu R B. 2009. Penguin population dynamics for the past 8500 years at Gardner Island, Vestfold Hills. Antarct. Sci., 21: 571–578.

    Article  Google Scholar 

  • Izaguirre I, Mataloni G, Vinocur A, Tell G. 1993. Temporal and spatial variations of phytoplankton from Boeckella Lake (Hope Bay, Antarctic Peninsula). Antarct. Sci., 5(2): 137–141.

    Article  Google Scholar 

  • Keatley B E, Douglas M S V, Smol J P. 2007. Physical and chemical limnological characteristics of lakes and ponds across environmental gradients on Melville Island, Nunavut/N.W.T., High Arctic Canada. Fund. Appl. Limnol., 168: 355–376.

    Article  Google Scholar 

  • Korczak-Abshire M. 2010. Climate change influences on Antarctic bird populations. Papers on Global Change, 17: 53–66.

    Google Scholar 

  • Lindeboom H J. 1984. The nitrogen pathway in a penguin rookery. Ecol., 65: 269–277.

    Article  Google Scholar 

  • Lynch H J, Fagan W F, Naveen R. 2010. Population trends and reproductive success at a frequently visited penguin colony on the western Antarctic Peninsula. Polar Biol., 33: 493–503.

    Article  Google Scholar 

  • Lynnes A S, Reid K, Croxall J P. 2004. Diet and reproductive success of Adélie and chinstrap penguins: linking response of predators to prey population dynamics. Polar Biol., 27: 544–554.

    Article  Google Scholar 

  • Lyver P O’ B, MacLeod C J, Ballard G, Karl B J, Barton K J, Adams J, Ainley D G, Wilson P R. 2011. Intra-seasonal variation in foraging behavior among Adélie penguins (Pygocelis adeliae) breeding at Cape Hallett, Ross Sea, Antarctica. Polar Biol., 34: 49–67.

    Article  Google Scholar 

  • Manny B A, Johnson W C, Wetzel R G. 1994. Nutrient additions by waterfowl to lakes and reservoirs: predicting their effects on productivity and water-quality. Hydrobiologia, 280: 121–132.

    Article  Google Scholar 

  • Marschall H P. 1988. The overwintering strategy of Antarctic krill under the pack-ice of the Weddell Sea. Polar Biol., 9: 129–135.

    Article  Google Scholar 

  • Myrcha A, Tatur A. 1991. Ecological role of the current and abandoned penguin rookeries in the land environment of the maritime Antarctic. Pol. Polar Res., 12: 3–24.

    Google Scholar 

  • Nędzarek A, Pociecha A. 2010. Limnological characterization of freshwater systems of the Thomas Point Oasis (Admiralty Bay, King George Island, West Antarctica). Polar Sci., 4: 457–467.

    Article  Google Scholar 

  • Nędzarek A, Rakusa-Suszczewski S. 2004. Decomposition of macroalgae and the release of nutrient in Admiralty Bay, King George Island, Antarctica. Polar Biosci., 17: 26–35.

    Google Scholar 

  • Nędzarek A, Rakusa-Suszczewski S. 2007. Nutrients and conductivity in precipitation in the coast of King George Island (Antarctica) in relation to wind speed and penguin colony distance. Pol. J. Ecol., 55: 705–716.

    Google Scholar 

  • Nędzarek A. 2008. Sources, diversity and circulation of biogenic compounds in Admiralty Bay, King George Island, Antarctica. Antarct. Sci., 20: 135–145.

    Google Scholar 

  • Nędzarek A. 2010. Change in N and P concentrations in antarctic streams as a response to change in penguin populations. Papers on Global Change, 17: 67–80.

    Google Scholar 

  • Pauly T, Nicol S, Higginbottom I, Hosie G, Kitchener J. 2000. Distribution and abundance of Antarctic krill (Euphausia superba) off East Antarctica (80–150°E) during the Austral summer of 1995/1996. Deep-Sea Res. II., 47: 2 465–2 488.

    Article  Google Scholar 

  • Pitman R L, Durban J W. 2010. Killer whale predation on penguins in Antarctica. Polar Biol., 33: 1 589–1 594.

    Article  Google Scholar 

  • Polis G A, Anderson W B, Holt R D. 1997. Toward an integration of landscape and food web ecology: the dynamics of spatially subsidized food webs. Annu. Rev. Ecol. Evol. Syst., 28: 289–316.

    Article  Google Scholar 

  • Puddicombe R A, Johnstone G W. 1988. The breeding season diet of Adélie penguins at the Vestfold Hills, East Antarctica. Hydrobiologia, 165: 239–253.

    Article  Google Scholar 

  • Qin XY, Huang T, Sun L G. 2013. Nutrients flow and phosphorus cycle in sea-land interface in the Antarctica. Chinese Journal of Ecology, 32(1): 195–203. (in Chinese with English abstract)

    Google Scholar 

  • Rakusa-Suszczewski S. 2003. Functioning of the geoecosystem for the West side of Admiralty Bay (King George Island, Antarctica): outline of research at Arctowski Station. Ocean Polar Res., 25: 653–662.

    Article  Google Scholar 

  • Sánchez-Piñero F, Polis G A. 2000. Bottom-up dynamics of allochthonous input: direct and indirect effects of seabirds on islands. Ecol., 81: 3 117–3 132.

    Google Scholar 

  • Sun L G, Xie Z Q, Liu X D, Yin X B, Zhu R B. 2006. Ecogeology of Ice-Free Areas in Antarctica. China Science Press, Beijing. (in Chinese)

    Google Scholar 

  • Sun L G, Xie Z Q, Zhao J L. 2000. A 3,000-year record of penguin populations. Nature, 407: 858–858.

    Article  Google Scholar 

  • Sun L G, Xie Z Q. 2001. Relics: penguin population programs. Sci. Prog., 84: 31–44.

    Article  Google Scholar 

  • Sun W P, Cai M H, Wang H Y, Xing C, Lu B, Peter H U, Froehlich A. 2010. Distribution and rerpoductive behavior of penguins on Ardley Island and their environmental impact factors. Chin. J. Polar Res., 22: 33–41. (in Chinese with English abstract)

    Article  Google Scholar 

  • Tatur A, Myrcha A. 1984. Ornithogenic soils on King George Island, South Shetland Islands (Maritime Antarctic Zone). Pol. Polar Res., 5: 31–60.

    Google Scholar 

  • Taylor R H. 1962. The Adélie Penguin Pygoscelis adeliae at Cape Royds. Ibis, 104: 176–204.

    Article  Google Scholar 

  • Trivelpiece W Z, Hinke J T, Miller A K, Reiss C S, Trivelpiece S G, Watters G M. 2011. Variability in krill biomass links harvesting and climate warming to penguin population changes in Antarctica. Proc. Natl. Acad. Sci. USA., 108: 7 625–7 628.

    Article  Google Scholar 

  • Trivelpiece W Z, Trivelpiece S G, Volkman N J. 1987. Ecological segregation of Adélie, gentoo, and chinstrap penguins at King George Island, Antarctica. Ecol., 68: 351–361.

    Article  Google Scholar 

  • Vidal E, Jouventin P, Frenot Y. 2003. Contribution of alien and indigenous species to plant-community assemblages near penguin rookeries at Crozet archipelago. Polar Biol., 26: 432–437.

    Google Scholar 

  • Whitehead M D, Johnstone G W. 1990. The distribution and estimated abundance of Adélie penguins breeding in Prydz Bay, Antarctica. Polar Biol., 3: 91–98.

    Google Scholar 

  • Wu B L. 1998. Studies on ecosystem of Fildes Peninsula and its adjecent areas, Antarctica. In: The Achievements and Developments of China on Scientific Research of Antarcitca. China Ocean Press, Beijing, p.65–138. (in Chinese)

    Google Scholar 

  • Zhu R B, Kong D M, Sun L G, Geng J J, Wang X R, Glindemann D. 2006b. Tropospheric phosphine and its sources in coastal Antarctica. Environ. Sci. Technol., 40: 7 656–7 661.

    Article  Google Scholar 

  • Zhu R B, Sun L G, Kong D M, Geng J J, Wang N, Wang Q, Wang X R. 2006a. Matrix-bound phosphinein Antarctic biosphere. Chemosphere, 64: 1 429–1 435.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liguang Sun  (孙立广).

Additional information

Supported by the National Natural Science Foundation of China (Nos. 40730107, 41106162), the Chinese Polar Environment Comprehensive Investigation and Assessment Programs (Nos. CHINARE 2014-04-01, CHINARE 2014-02-01, CHINARE 2014-04-04), and the Doctoral Fund of Ministry of Education of China (No. 20103402110023). The samples in this study were provided by the BIRDS-Sediment system

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qin, X., Sun, L., Blais, J.M. et al. From sea to land: assessment of the bio-transport of phosphorus by penguins in Antarctica. Chin. J. Ocean. Limnol. 32, 148–154 (2014). https://doi.org/10.1007/s00343-014-3115-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00343-014-3115-5

Keyword

Navigation