Skip to main content
Log in

Accuracy of the staggered-grid finite-difference method of the acoustic wave equation for marine seismic reflection modeling

  • Geology
  • Published:
Chinese Journal of Oceanology and Limnology Aims and scope Submit manuscript

Abstract

Seismic wave modeling is a cornerstone of geophysical data acquisition, processing, and interpretation, for which finite-difference methods are often applied. In this paper, we extend the velocity-pressure formulation of the acoustic wave equation to marine seismic modeling using the staggered-grid finite-difference method. The scheme is developed using a fourth-order spatial and a second-order temporal operator. Then, we define a stability coefficient (SC) and calculate its maximum value under the stability condition. Based on the dispersion relationship, we conduct a detailed dispersion analysis for submarine sediments in terms of the phase and group velocity over a range of angles, stability coefficients, and orders. We also compare the numerical solution with the exact solution for a P-wave line source in a homogeneous submarine model. Additionally, the numerical results determined by a Marmousi2 model with a rugged seafloor indicate that this method is sufficient for modeling complex submarine structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Alford R M, Kelly K R, Boore D M. 1974. Accuracy of finitedifference modeling of the acoustic wave equation. Geophysics, 39: 834–842.

    Article  Google Scholar 

  • Alkhalifah T. 1997. An anisotropic Marmousi model. SEP-95: Stanford Exploration Project. p.265–282.

  • Carcione J M, Herman G C, ten Kroode A P. 2002. Seismic modeling. Geophysics, 67: 1 304–1 325.

    Article  Google Scholar 

  • Dai N, Vafidis A, Kanasewich E R. 1995. Wave propagation in heterogeneous, porous media: a velocity-stress, finitedifference method. Geophysics, 60: 327–340.

    Article  Google Scholar 

  • De Hoop A T. 1960. A modification of cagniard’s method for solving seismic pulse problems. Applied Scientific Research Section B, 8: 349–356.

    Article  Google Scholar 

  • Faria E I, Stoffa P L. 1994. Finite-difference modeling in transversely isotropic media. Geophysics, 59: 282–289.

    Article  Google Scholar 

  • Haney M M. 2007. Generalization of von Neumann analysis for a model of two discrete half-space: the acoustic case. Geophysics, 72: SM35–46.

    Article  Google Scholar 

  • Juhlin C. 1995. Finite-difference elastic wave propagation in 2D heterogeneous transversely isotropic media. Geophysics Prospecting, 43: 843–858.

    Article  Google Scholar 

  • Kelly K R, Ward R W, Treitel S, Alford R M. 1976. Synthetic seismograms: a finite-difference approach. Geophysics, 41: 2–27.

    Article  Google Scholar 

  • Kneib G, Kerner C. 1993. Accurate and efficient seismic modeling in random media. Geophysics, 51: 54–66.

    Google Scholar 

  • Levander A R. 1988. Fourth-order finite-difference P-SV seismic seismograms. Geophysics, 53: 1 425–1 436.

    Article  Google Scholar 

  • Liu Y, Sen M. 2007. A practical implicit finite-difference method: examples from seismic modeling. J. Geophys. Eng., 6: 231–249.

    Article  Google Scholar 

  • Martin G S, Wiley R, Marfurt K J. 2006. Marmousi2: an elastic upgrade for Marmousi. The Leading Edge, 25: 156–166.

    Article  Google Scholar 

  • Masson Y, Pride S, Nihei K. 2006. Finite difference modeling of Biot’s poroelastic equations at seismic frequencies. Journal of Geophysical Research, 111: B10305.

    Article  Google Scholar 

  • Masson Y J, Pride S R. 2010. Finite-difference modeling of Biot’s poroelastic equations across all frequencies. Geophysics, 75: N33–N41.

    Article  Google Scholar 

  • Mou Y G, Pei Z L. 2006. Seismic Numerical Modeling for 3D Complex Media. Petroleum Industry Press Beijing, China.

    Google Scholar 

  • Saenger E H, Gold N, Shapiro S A. 2000. Modeling the propagation of elastic waves using a modified finitedifference grid. Wave Motion, 31: 77–92.

    Article  Google Scholar 

  • Versteeg R. 1994. The Marmousi experience: velocity model determination on a synthetic complex data set. The Leading Edge, 13: 927–936.

    Article  Google Scholar 

  • Virieux J. 1984. SH-wave propagation in heterogeneous media: velocity-stress finite-difference method. Geophysics, 49: 1 933–1 942.

    Article  Google Scholar 

  • Virieux J. 1986. P-SV wave propagation in heterogeneous media: velocity-stress finite-difference method. Geophysics, 51: 889–901.

    Article  Google Scholar 

  • Zhang J F. 1997. Quadrangle-grid velocity-stress finite difference method for elastic wave propagation simulation. Geophysical Journal International, 137: 171–182.

    Google Scholar 

  • Zhang J F. 1999. Quadrangle-grid velocity-stress finite difference method for poroelastic wave equations. Geophysical Journal International, 139: 171–182.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin Qian  (钱进).

Additional information

Supported by the National Natural Science Foundation of China (Nos. 41206043, 40930845), the Open Foundation of Key Laboratory of Marine Geology and Environment of Chinese Academy of Sciences (No. MGE2011KG07), the Knowledge Innovation Program of Chinese Academy of Sciences (No. KZCX2-YW-229), and the National Basic Research Program of China (973 Program) (No. 2009CB219505)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qian, J., Wu, S. & Cui, R. Accuracy of the staggered-grid finite-difference method of the acoustic wave equation for marine seismic reflection modeling. Chin. J. Ocean. Limnol. 31, 169–177 (2013). https://doi.org/10.1007/s00343-013-2074-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00343-013-2074-6

Keyword

Navigation