Skip to main content
Log in

A dipole wind curl pattern induced by Taiwan Island and its effect on upper stratification in the northeastern South China Sea

  • Published:
Chinese Journal of Oceanology and Limnology Aims and scope Submit manuscript

Abstract

Using hydrographic data sampled during four successive late summer-early autumn cruises in 2004–2007, vertical stratification along transects in the lee of Taiwan Island was analyzed to investigate upper ocean responses to orographically induced dipole wind stress curl (WSC). Results indicate that mixed-layer depth (MLD) and its relationship with thermocline depth varied under different local wind forcings. Average MLD along the transects from the 2004 to 2007 cruises were 18.5, 30.7, 39.2 and 24.5 m, respectively. The MLD along the transects deepened remarkably and resulted in thermocline ventilation in 2005 and 2006, whereas ventilation did not occur in 2004 and 2007. Estimates indicate that frictional wind speed was the major factor in MLD variations. To a large degree, the combined effects of frictional wind speed and Ekman pumping are responsible for the spatial pattern of MLD during the cruises.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Du Y. 2002. Seasonal dynamics of the mixed layer and thermocline in the South China Sea, Ph.D. dissertation, Ocean Univ. of China, Qingdao. 240p.

    Google Scholar 

  • Fairall C W, Bradley E, Rogers D P, Edison P J B, Young G S. 1996. Bulk parameterization of the air-sea fl uxes for tropical ocean-global atmosphere coupled-ocean response experiment. Geophys. Res. Lett., 101: 3 747–3 764.

    Google Scholar 

  • Fang W, Fang G, Shi P, Huang Q, Xie Q. 2002. Seasonal structures of upper layer circulation in the southern South China Sea from in situ observations. J. Geophys. Res., 107: 3 202, http://dx.doi.org/10.1029/2002JC001343.

    Article  Google Scholar 

  • Jia Y, Liu Q, Liu W. 2005. Primary study of the mechanism of eddy shedding from the Kuroshio Bend in Luzon Strait. J. Oceanogr., 61: 1 017–1 027.

    Article  Google Scholar 

  • Kara A B, Rochford P A, Hurlburt H E. 2000. Mixed layer depth variability and barrier layer formation over the North Pacific Ocean. J. Geophys. Res., 105(C7): 16 783–16 802.

    Google Scholar 

  • Kraus E B, Turner J S. 1967. A one-dimensional model of the seasonal thermocline. Part II: The general theory and its consequences. Tellus, 19: 98–105.

    Article  Google Scholar 

  • Liu Q, Jia Y, Liu P, Wang Q. 2001. Seasonal and interseasonal thermocline variability in the central South China Sea. Geophys. Res. Lett., 28(23): 2 267–4 470.

    Article  Google Scholar 

  • Liu W T. 2002. Progress in scatterometer application. J. Oceanogr., 58: 121–136, http://dx.doi.org/10.1023/A:1015832919110

    Article  Google Scholar 

  • Liu W T, Xie X. 1999. Space-based observations of the seasonal changes of South Asian monsoons and oceanic response. Geophys. Res. Lett., 26: 1 473–1 476.

    Google Scholar 

  • Luis A J, Kawamura H. 2004. Air-sea interaction, coastal circulation and primary production in the eastern Arabian Sea: a review. J. Oceanogr., 60: 205–218.

    Article  Google Scholar 

  • Martin R, Moore G W K. 2007. Air-sea interaction associated with a Greenland reverse tip jet. Geophys. Res. Lett., 34, L24802, http://dx.doi.org/10.1029/2007GL031093.

    Article  Google Scholar 

  • Monterey G, Levitus S. 1997. Seasonal variability of mixed layer depth for the World Ocean. NOAA Atlas NESDIS 14, U.S. Gov. Printing Office, Wash. DC. 100p.

    Google Scholar 

  • Pickart R S, Spall M A, Ribergaard M H, Moore G W K, Milliff R F. 2003. Deep convection in the Irminger Sea forced by the Greenland tip jet. Nature, 424(6945): 152–156.

    Article  Google Scholar 

  • Qu T. 2001. The role of ocean dynamics in determining the mean seasonal cycle of the South China Sea surface temperature. J. Geophys. Res., 106: 6 943–6 955.

    Article  Google Scholar 

  • Qu T, Du Y, Gan J, Wang D. 2007. Mean seasonal cycle of isothermal depth in the South China Sea. J. Geophys. Res., 112: C02020, http://dx.doi.org/10.1029/2006JC003583.

    Article  Google Scholar 

  • Shaw P-T. 1991. Seasonal variation of the intrusion of the Philippine Sea water into the South China Sea. J. Geophys. Res., 96: 821–827.

    Article  Google Scholar 

  • Wang B, Wu R, Fu X. 2000. Pacific-East Asian teleconnection: how does ENSO affect East Asian climate? J. Clim., 13: 1 517–1 536.

    Google Scholar 

  • Wang D, Liu Y, Qi Y, Shi P. 2001a. Seasonal variability of thermal fronts in the northern South China Sea from satellite data. Geophys. Res. Lett., 28(20): 3 963–3 966.

    Article  Google Scholar 

  • Wang D, Du Y, Shi P. 2001b. Evidence for thermocline ventilation in the South China in winter, Chin. Sci. Bull., 46(9): 774–778.

    Article  Google Scholar 

  • Wang G, Chen D, Su J. 2008. Winter eddy genesis in the eastern South China Sea due to orographic wind jets. J. Phys. Oceanogr., 38: 726–732.

    Article  Google Scholar 

  • Wu C-R, Chiang T L. 2007. Mesoscale eddies in the northern South China Sea. Deep Sea Res., Part II, 54: 1 575–1 588.

    Google Scholar 

  • Xie S-P, Liu W T, Liu Q, Nonaka M. 2001. Far-reaching effects of the Hawaiian Island on the Pacific Ocean-Atmosphere. Science, 292: 2 057–2 060.

    Article  Google Scholar 

  • Xie S-P, Xie Q, Wang D, Liu W T. 2003. Summer upwelling in the South China Sea and its role in regional climate variations. J. Geophys. Res., 108: 3 261, http://dx.doi.org/10.1029/2003JC001867.

    Google Scholar 

  • Xu H, Xie S-P, Wang Y, Zhuang W, Wang D. 2008. Orographic effects on South China Sea summer climate. Meteorol. Atmos. Phys., 100: 275–289.

    Article  Google Scholar 

  • Yuan D, Han W, Hu D. 2006. Surface Kuroshio path in the Luzon Strait area derived from satellite remote sensing data. J. Geophys. Res., 111: C11007, http://dx.doi.org/10.1029/2005JC003412.

    Article  Google Scholar 

  • Yuan D, Han W, Hu D. 2007. Anti-cyclonic eddies northwest of Luzon in summer-fall by satellite altimeters. Geophys. Res. Lett., 34: L13610, http://dx.doi.org/10.1029/2007GL029401.

    Article  Google Scholar 

  • Zhang Y. 1997. East Asian winter monsoons: results from eight AMIP models. Clim. Dyn., 1 3: 11 797–11 820.

    Article  Google Scholar 

  • Zhuang W, Xie S P, Wang D, Taguchi B, Aiki H, Sasaki H. 2010. Intraseasonal variability in sea surface height over the South China Sea. J. Geophys. Res., 115: C04010, http://dx.doi.org/10.1029/2009JC005647.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dongxiao Wang  (王东晓).

Additional information

Supported by the Knowledge Innovation Program of Chinese Academy of Sciences (No. KZCX2-YW-Q11-02), the National Basic Research Program of China (973 Program) (No. 2011CB403503), and the National Natural Science Foundation of China (Nos. 40876009, 41176028)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Deng, Y., Shi, P., Zhou, W. et al. A dipole wind curl pattern induced by Taiwan Island and its effect on upper stratification in the northeastern South China Sea. Chin. J. Ocean. Limnol. 30, 944–952 (2012). https://doi.org/10.1007/s00343-012-1260-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00343-012-1260-2

Keyword

Navigation