Skip to main content
Log in

Parity-nonconserving interaction-induced light shifts in the \(\bf{7S}_{1/2}\)\(\bf{6D}_{3/2}\) transition of the ultracold \({^{210}\bf{Fr}}\) atoms to probe new physics beyond the standard model

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

We present an experimental technique to measure light shifts due to the nuclear spin independent (NSI) parity-nonconserving (PNC) interaction in the \(7S_{1/2}\)\(6D_{3/2}\) transition in ultracold \({^{210}\mathrm{Fr}}\) atoms. The approach we propose is similar to the one by Fortson (Phys Rev Lett 70:2383, 10) to measure the PNC-induced light shift which arises from the interference of parity nonconserving electric dipole transition and electric quadrupole transition amplitudes. Its major advantage is that it can treat more than \(10^4\) ultracold \({^{210}\mathrm{Fr}}\) atoms to enhance the shot noise limit. A relativistic coupled-cluster method has been employed to calculate the electric dipole transition amplitudes arising from the PNC interaction. Based on these calculations, we have evaluated the PNC-induced light shifts for transitions between the hyperfine levels of the \(7S_{1/2}\) and \(6D_{3/2}\) states and suitable transitions are identified for carrying out PNC measurements. It is possible in principle to probe new physics beyond the standard model with our proposed experimental scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. M.A. Bouchiat, C. Bouchiat, Rep. Prog. Phys. 60, 1351 (1997)

    Article  ADS  Google Scholar 

  2. J.S.M. Ginges, V. Flambaum, Phys. Rep. 397, 63 (2004)

    Article  ADS  Google Scholar 

  3. M.A. Bouchiat, C. Bouchiat, J. Phys. (Paris) 35, 899 (1974)

    Article  Google Scholar 

  4. M.A. Bouchiat, C.C. Bouchiat, Phys. Lett. B 48, 111 (1974)

    Article  ADS  Google Scholar 

  5. V.V. Flambaum, I.B. Khriplovich, J. Exp. Theor. Phys. 52, 835 (1980)

    ADS  Google Scholar 

  6. W.J. Marciano et al., Phys. Rev. Lett. 65, 2963 (1990)

    Article  ADS  Google Scholar 

  7. M.J. Ramsey-Musolf, Phys. Rev. C 60, 015501 (1999)

    Article  ADS  Google Scholar 

  8. C.S. Wood, S.C. Bennett, D. Cho, B.P. Masterson, J.L. Roberts, C.E. Tanner, C.E. Wieman, Science 275, 1759 (1997)

    Article  Google Scholar 

  9. K. Tsigutkin, D. Dounas-Frazer, A. Family, J.E. Stalnaker, V.V. Yashchuk, D. Budker, Phys. Rev. Lett. 103, 071601 (2009)

    Article  ADS  Google Scholar 

  10. N. Fortson, Phys. Rev. Lett. 70, 2383 (1993)

    Article  ADS  Google Scholar 

  11. L.W. Wansbeek, B.K. Sahoo, R.G.E. Timmermans, K. Jungmann, B.P. Das, D. Mukherjee, Phys. Rev. A 78, 050501(R) (2008)

    Article  ADS  Google Scholar 

  12. B.K. Sahoo, B.P. Das, Phys. Rev. A 84, 010502(R) (2011)

    Article  ADS  Google Scholar 

  13. B.M. Roberts, V.A. Dzuba, V.V. Flambaum, Phys. Rev. A 89, 012502 (2014)

    Article  ADS  Google Scholar 

  14. W.R. Johnson, M.S. Safronova, U.I. Safronova, Phys. Rev. A 67, 062106 (2003)

    Article  ADS  Google Scholar 

  15. B.K. Sahoo, T. Aoki, B.P. Das, Y. Sakemi, Phys. Rev. A 93, 032520 (2016)

    Article  ADS  Google Scholar 

  16. M.-A. Bouchiat, Phys. Rev. Lett. 100, 123003 (2008)

    Article  ADS  Google Scholar 

  17. E. Gomez, S. Aubin, G.D. Sprouse, L.A. Orozco, D.P. DeMille, Phys. Rev. A 75, 033418 (2007)

    Article  ADS  Google Scholar 

  18. D. Sheng, L.A. Orozco, E. Gomez, J. Phys. B At. Mol. Opt. Phys. 43, 074004 (2010)

    Article  ADS  Google Scholar 

  19. G. Stancari, S.N. Atutov, R. Calabrese, L. Corradi, A. Dainelli, C. de Mauro, A. Khanbekyan, E. Mariotti, P. Minguzzi, L. Moi, S. Sanguinetti, L. Tomassetti, S. Veronesi, Eur. Phys. J. Special Topics 150, 389 (2007)

    Article  ADS  Google Scholar 

  20. B.K. Sahoo, B.P. Das, R.K. Chaudhuri, D. Mukherjee, Phys. Rev. A 75, 032507 (2007)

    Article  ADS  Google Scholar 

  21. K.P. Geetha, A.D. Singh, B.P. Das, C.S. Unnikrishnan, Phys. Rev. A 58, R16(R) (1998)

    Article  ADS  Google Scholar 

  22. B.K. Sahoo, P. Mandal, M. Mukherjee, Phys. Rev. A 83, 030502(R) (2011)

    Article  ADS  Google Scholar 

  23. T. Aoki, Y. Torii, B.K. Sahoo, B.P. Das, K. Harada, T. Hayamizu, K. Sakamoto, H. Kawamura, T. Inoue, A. Uchiyama et al., Asian J. Phys. 25, 1247 (2016)

    Google Scholar 

  24. E.D. Commins, P.H. Bucksbaum, Weak Interactions of Leptons and Quarks (Cambridge University Press, Cambridge, 1983)

    Google Scholar 

  25. D. London, J.L. Rosner, Phys. Rev. D 34, 1530 (1986)

    Article  ADS  Google Scholar 

  26. V.A. Dzuba, J.C. Berengut, V.V. Flambaum, B. Roberts, Phys. Rev. Lett. 109, 203003 (2012)

    Article  ADS  Google Scholar 

  27. V. Barger, G.F. Guidice, T. Han, Phys. Rev. D 40, 2987 (1989)

    Article  ADS  Google Scholar 

  28. E.J. Eichten et al., Phys. Rev. Lett. 50, 811 (1983)

    Article  ADS  Google Scholar 

  29. A.E. Nelson, Phys. Rev. Lett. 78, 4159 (1997)

    Article  ADS  Google Scholar 

  30. A. Deandrea, Phys. Lett. B 409, 277 (1997)

    Article  ADS  Google Scholar 

  31. D. Wang et al., Nature 506, 67 (2014)

    Article  ADS  Google Scholar 

  32. M.E. Peskin, T. Takeuchi, Phys. Rev. Lett. 65, 964 (1990)

    Article  ADS  Google Scholar 

  33. K.S. Kumar, S. Mantry, W.J. Marciano, P.A. Souder, Annu. Rev. Nucl. Part. Sci. 63, 237 (2013)

    Article  ADS  Google Scholar 

  34. C. Bouchiat, P. Fayet, Phys. Lett. 608, 87 (2005)

    Article  Google Scholar 

  35. H. Davoudiasl, H.-S. Lee, W.J. Marciano, Phys. Rev. D 85, 115019 (2012)

    Article  ADS  Google Scholar 

  36. H. Davoudiasl, H.-S. Lee, W.J. Marciano, Phys. Rev. Lett. 109, 031802 (2012)

    Article  ADS  Google Scholar 

  37. D. Androic et al. (\(Q_{weak}\) Collaboration), Phys. Rev. Lett. 111, 141803 (2013)

  38. J. Erler, A. Kurylov, M.J. Ramsey-Musolf, Phys. Rev. D 68, 016006 (2003)

    Article  ADS  Google Scholar 

  39. J. Beringer et al. (Particle Data Group), Phys. Rev. D 86, 010001 (2012)

  40. B.K. Sahoo, B.P. Das, Phys. Rev. A 92, 052511 (2015)

    Article  ADS  Google Scholar 

  41. http://physics.nist.gov/cgi-bin/ASD/energy1.pl

  42. M.S. Safronova, W.R. Johnson, Phys. Rev. A 62, 022112 (2000)

    Article  ADS  Google Scholar 

  43. V.A. Dzuba, V.V. Flambaum, M.S. Safronova, Phys. Rev. A 73, 022112 (2006)

    Article  ADS  Google Scholar 

  44. V.M. Shabaev, I.I. Tupitsyn, K. Pachucki, G. Plunien, V.A. Yerokhin, Phys. Rev. A 72, 062105 (2005)

    Article  ADS  Google Scholar 

  45. B.K. Sahoo, D.K. Nandy, B.P. Das, Y. Sakemi, Phys. Rev. A 91, 042507 (2015)

    Article  ADS  Google Scholar 

  46. N.F. Ramsey, Molecular Beams (Oxford University Press, Oxford, 1956)

    Google Scholar 

  47. J.E. Sansonetti, J. Phys. Chem. Ref. Data 36, 497 (2007)

    Article  ADS  Google Scholar 

  48. C. Ekström, L. Robertsson, A. Rosán, Physica Scripta. 34, 624 (1986)

    Article  ADS  Google Scholar 

  49. Y. Sakemi et al., J. Phys. Conf. Ser. 302, 012051 (2011)

    Article  Google Scholar 

  50. H. Kawamura et al., JPS Conf. Proc. 6, 030068 (2015)

  51. T. Inoue et al., JPS Conf. Proc. 6, 030070 (2015)

    Google Scholar 

  52. K. Harada et al., Appl. Opt. 55, 1164 (2016)

    Article  ADS  Google Scholar 

  53. U. Gaubatz, P. Rudecker, M. Becker, S. Schiemann, M. Külz, K. Bergmann, Chem. Phys. Lett. 149, 463 (1988)

    Article  ADS  Google Scholar 

  54. J.R. Kuklinski, U. Gaubatz, F.T. Hioe, K. Bergmann, Phys. Rev. A 40, R6741 (1989)

    Article  ADS  Google Scholar 

  55. M. Weitz, B.C. Young, S. Chu, Phys. Rev. A 50, 2438 (1994)

    Article  ADS  Google Scholar 

  56. P. Marte, P. Zoller, J.L. Hall, Phys. Rev. A 44, R4118 (1991)

    Article  ADS  Google Scholar 

  57. T. Nakajima, Phys. Rev. A 59, 559 (1999)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank Dr. M. Mukherjee of National University of Singapore, Prof. S. Tojo of Chuo University, and Dr. U. Tanaka of Osaka University for many useful discussions on light shifts and E2 transitions. We also thank Dr. N. Yamanaka in Riken for discussions. This work was supported by a Grant-in-Aid for Scientific Research (B) (No. 25287100), a Grant-in-Aid for Scientific Research (S) (No. 26220705), and a Grant-in-Aid for Scientific Research on Innovative Areas (No. 21104005) from the Japan Society for the Promotion of Science (JSPS). BKS acknowledges access to the Vikram-100 HPC cluster of the Physical Research Laboratory (PRL), India for carrying out computations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Aoki.

Additional information

This article is part of the topical collection “Enlightening the World with the Laser” - Honoring T. W. Hänsch guest edited by Tilman Esslinger, Nathalie Picqué, and Thomas Udem.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aoki, T., Torii, Y., Sahoo, B.K. et al. Parity-nonconserving interaction-induced light shifts in the \(\bf{7S}_{1/2}\)\(\bf{6D}_{3/2}\) transition of the ultracold \({^{210}\bf{Fr}}\) atoms to probe new physics beyond the standard model. Appl. Phys. B 123, 120 (2017). https://doi.org/10.1007/s00340-017-6673-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-017-6673-3

Keywords

Navigation