Skip to main content

Advertisement

Log in

A high-efficiency and broadband reflective 90° linear polarization rotator based on anisotropic metamaterial

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

In this paper, a high-efficiency and broadband reflective linear polarization rotator based on anisotropic metamaterial is proposed, which is verified by simulation and experiment. Simulated results indicate that our design can achieve 90° polarization rotation from 5.7 to 10.3 GHz with the relative bandwidth of 57.5 %, which is agreement well with experiment. The further simulated results indicate that our design can achieve linear polarization conversion or rotation by 90° under oblique incident angles with large range for both transverse electric and transverse magnetic waves. Finally, the amplitude and phase of reflective coefficients with different polarization, and surface current distribution of the unit cell structure are simulated to explain the physics mechanism of the high-efficiency and broadband polarization rotation. Our design will provide an important reference for the practical applications of the metamaterial in polarization manipulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. H. Eugene, Optics (Addison Wesley, New York, 2002), p. 78

    Google Scholar 

  2. J. Lub, P. van de Witte, C. Doornkamp, J.P.A. Vogels, R.T. Wegh, Adv. Mater. 15, 1420 (2003)

    Article  Google Scholar 

  3. M.R. Andrews, P.P. Mitra, R. de Carvalho, Nature 409, 316 (2001)

    Article  ADS  Google Scholar 

  4. T.J. Cui, R.S. David, R. Liu, Metamaterials: Theory, Design, and Applications (Springer, New York, 2010), p. 9

  5. Z.Z. Cheng, Y.Z. Cheng, Microw. Opt. Technol. Lett. 53, 615 (2011)

    Article  Google Scholar 

  6. I.I. Smolyaninov, Y.J. Hung, C.C. Davis, Science 315, 1699 (2007)

    Article  ADS  Google Scholar 

  7. D. Schurig, J.J. Mock, B.J. Justice et al., Science 314, 977 (2006)

    Article  ADS  Google Scholar 

  8. Y.Z. Cheng, T. Xiao, H.L. Yang, B.X. Xiao, Acta Phys. Sin. 59, 5715 (2010)

    Google Scholar 

  9. A.V. Rogacheva, V.A. Fedotov, A.S. Schwanecke, N.I. Zheludev, Phys. Rev. Lett. 97, 177401 (2006)

    Article  ADS  Google Scholar 

  10. J. Hao, Y. Yuan, L. Ran et al., Phys. Rev. Lett. 99, 063908 (2007)

    Article  ADS  Google Scholar 

  11. J.Y. Chin, M. Lu, T.J. Cui, Appl. Phys. Lett. 93, 251903 (2008)

    Article  ADS  Google Scholar 

  12. Y.Q. Ye, S.L. He, Appl. Phys. Lett. 96, 203501 (2010)

    Article  ADS  Google Scholar 

  13. W.J. Sun, Q. He, J.M. Hao, L. Zhou, Opt. Lett. 36, 927 (2011)

    Article  ADS  Google Scholar 

  14. L.T. Chen, Y.Z. Cheng, Y. Nie, R.Z. Gong, Acta Phys. Sin. 61, 094203 (2012)

    Google Scholar 

  15. Z. Li, M. Mutlu, E. Ozbay, J. Opt. 15, 023001 (2013)

    Article  ADS  Google Scholar 

  16. Y. Cheng, Y. Nie, X. Wang, R. Gong, Appl. Phys. A 111, 209 (2013)

    Article  ADS  Google Scholar 

  17. C. Huang, Y. Feng, J. Zhao, Z. Wang, T. Jiang, Phys. Rev. B 85, 195131 (2012)

    Article  ADS  Google Scholar 

  18. J.K. Gansel, M. Thiel, M.S. Rill, M. Decker, K. Bade, V. Saile, G. Freymann, S. Linden, M. Wegener, Science 325, 1513 (2009)

    Article  ADS  Google Scholar 

  19. H.X. Xu, G.M. Wang, M.Q. Qi, T. Cai, Prog. Electromagn. Res. 143, 243 (2013)

    Article  Google Scholar 

  20. Y.Z. Cheng, R.Z. Gong, Z.Z. Cheng, Y. Nie, Appl. Opt. 53, 5763 (2014)

    Article  ADS  Google Scholar 

  21. M. Decker, R. Zhao, C.M. Soukoulis, S. Linden, M. Wegener, Opt. Lett. 35, 1593 (2010)

    Article  ADS  Google Scholar 

  22. M.H. Li, L.Y. Guo, H.L. Yang, Microw. Opt. Technol. Lett. 56, 2381 (2014)

    Article  Google Scholar 

  23. Y.Z. Cheng, C.J. Wu, Z.Z. Cheng, R.Z. Gong, Prog. Electromagn. Res. 155, 105 (2016)

    Article  Google Scholar 

  24. M. Feng, J. Wang, H. Ma, W. Mo, H. Ye, S. Qu, J. Appl. Phys. 114, 074508 (2013)

    Article  ADS  Google Scholar 

  25. Y.Z. Cheng, W. Withayachumnankul, A. Upadhyay, D. Headland, Y. Nie, R.Z. Gong, M. Bhaskaran, S. Sriram, D. Abbott, Appl. Phys. Lett. 105, 181111 (2014)

    Article  ADS  Google Scholar 

  26. L. Zhang, P. Zhou, H. Lu, H. Cheng, J. Xie, L. Deng, IEEE Antennas Wirel. Propag. Lett. 14, 1157 (2015)

    Article  ADS  Google Scholar 

  27. Z.Y. Wei, Y. Cao, X.Yu. Fan, H. Li, Appl. Phys. Lett. 99, 221907 (2011)

    Article  ADS  Google Scholar 

  28. Y.Z. Cheng, Y. Nie, Z.Z. Cheng, L. Wu, X. Wang, R.Z. Gong, J. Electromagn. Waves Appl. 27, 1850 (2013)

    Article  Google Scholar 

  29. X.J. Huang, B.X. Xiao, D. Yang, H.L. Yang, Opt. Commun. 338, 416 (2015)

    Article  ADS  Google Scholar 

  30. N.K. Grady, J.E. Heyes, D.R. Chowdhury, Y. Zeng, M.T. Reiten, A.K. Azad, A.J. Tayor, D.A. Dalvit, H.T. Chen, Science 340, 1304 (2013)

    Article  ADS  Google Scholar 

  31. X. Gao, X. Han, W.P. Cao, H.O. Li, H.F. Ma, T.J. Cui, IEEE Trans. Antennas Propag. 63, 3522 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  32. H.Y. Chen, J.F. Wang, H. Ma, S.B. Qu, J.Q. Zhang, Z. Xu, A.X. Zhang, Chin. Phys. B 24, 014201 (2015)

    Article  ADS  Google Scholar 

  33. Y.Z. Cheng, Z.Z. Cheng, R.Z. Gong, Opt. Commun. 361, 41 (2016)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work is supported by the National Natural Science Foundation of China (NSFC) (Grant No. 61605147) and the Youth science and technology backbone cultivation plan project of the Wuhan University of Science and Technology (Grant No. 2016xz010).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongzhi Cheng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, J., Cheng, Y. A high-efficiency and broadband reflective 90° linear polarization rotator based on anisotropic metamaterial. Appl. Phys. B 122, 255 (2016). https://doi.org/10.1007/s00340-016-6533-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-016-6533-6

Keywords

Navigation