Skip to main content
Log in

A novel technique to achieve atomic macro-coherence as a tool to determine the nature of neutrinos

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

The photon spectrum in macro-coherent atomic deexcitation via radiative emission of neutrino pairs has been proposed as a sensitive probe of the neutrino mass spectrum, capable of competing with conventional neutrino experiments. In this paper, we revisit this intriguing possibility, presenting an alternative method for inducing large coherence in a target based on adiabatic techniques. More concretely, we propose the use of a modified version of coherent population return (CPR), namely two-photon CPR, that turns out to be extremely robust with respect to the experimental parameters and capable of inducing a coherence close to 100 % in the target.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. B. Pontecorvo, Sov. Phys. JETP 26, 984–988 (1968)

    ADS  Google Scholar 

  2. N.V. Gribov, B. Pontecorvo, Phys. Lett. B 28, 493 (1969)

    Article  ADS  Google Scholar 

  3. M.C. Gonzalez-Garcia, M. Maltoni, Phys. Rep. 460, 1–129 (2008)

    Article  ADS  Google Scholar 

  4. J. Beringer et al., Phys. Rev. D 86, 010001 (2012). (particle data group)

    Article  ADS  Google Scholar 

  5. M.C. Gonzalez-Garcia, M. Maltoni, T. Schwetz, JHEP 11, 052 (2014)

    Article  ADS  Google Scholar 

  6. P. Adamson et al., Phys. Rev. Lett. 112, 191801 (2014). (MINOS collaboration)

    Article  ADS  Google Scholar 

  7. K. Abe et al., T2K collaboration. Phys. Rev. D 91(7), 072010 (2015)

  8. R.B. Patterson, NOvA collaboration, in Proceedings, 25th International Conference on Neutrino Physics and Astrophysics (Neutrino 2012) (2012)

  9. K. Abe et al., PTEP 2015, 5 (2015). (hyper-kamiokande proto-collaboration)

    Google Scholar 

  10. M. Bass et al., Phys. Rev. D 91(5), 052015 (2015). (LBNE collaboration)

  11. Ch. Kraus et al., Eur. Phys. J. C 40, 447468 (2005)

    Article  Google Scholar 

  12. V.N. Aseev et al., Phys. Rev. D 84, 112003 (2011)

    Article  ADS  Google Scholar 

  13. G. Drexlin, V. Hannen, S. Mertens, C. Weinheimer, Adv. High Energy Phys. 2013, 39 (2013)

    Article  Google Scholar 

  14. C. Macolino, Mod. Phys. Lett A 29(1), 1430001 (2014). (GERDA collaboration)

  15. A. Gando et al., Phys. Rev. Lett. 110(6), 062502 (2013). (KamLAND-Zen collaboration)

  16. J.B. Albert et al., Phys. Rev. C 89(1), 015502 (2014). (EXO-200 collaboration)

  17. K. Alfonso et al., (CUORE collaboration) (2015). arXiv:1504.02454

  18. M. Yoshimura, Phys. Lett. B 699, 123–128 (2011)

    Article  ADS  Google Scholar 

  19. A. Fukumi, S. Kuma, Y. Miyamoto, K. Nakajima, I. Nakano, H. Nanjo, C. Ohae, N. Sasao, M. Tanaka, T. Taniguchi, S. Uetake, T. Wakabayashi, T. Yamaguchi, A. Yoshimi, M. Yoshimura, Prog. Theor. Exp. Phys. 2012, 04D002 (2012)

    Article  Google Scholar 

  20. D.N. Dinh, S.T. Petcov, N. Sasao, M. Tanaka, M. Yoshimura, Phys. Lett. B 719, 154–163 (2013)

    Article  ADS  Google Scholar 

  21. N. Song, R. Boyero, Garcia, J.J. Gomez-Cadenas, M.C. Gonzalez-Garcia, A. Peralta Conde, J. Taron, Phys. Rev. D. 93, 013020 (2016)

  22. M. Yoshimura, N. Sasao, M. Tanaka, Phys. Rev. A 86, 013812 (2012)

    Article  ADS  Google Scholar 

  23. For a review of both the theory and experiments of superradiance, M. Benedict, A.M. Ermolaev, V.A. Malyshev, I.V. Sokolov, and E.D. Trifonov, Super-radiance Multiatomic coherent emission, Informa (1996). For a formal aspect of the theory, M. Gross and S. Haroche, Phys.Rep.93, 301, 1982. The original suggestion of superradiance is R.H. Dicke. Phys. Rev. 93, 99 (1954)

  24. Y. Miyamoto, H. Hara, S. Kuma, T. Masuda, I. Nakano, C. Ohae, N. Sasao, M. Tanaka, S. Uetake, A. Yoshimi, K. Yoshimura, M. Yoshimura, Prog. Theor. Exp. Phys. 2014, 11 (2014)

    Article  Google Scholar 

  25. N.V. Vitanov, B.W. Shore, L. Yatsenko, K. Böhmer, T. Halfmann, T. Rickes, K. Bergmann, Opt. Commun. 199, 117–126 (2001)

    Article  ADS  Google Scholar 

  26. B.W. Shore, The Theory of Coherent Atomic Excitation (Wiley, New York, 1990)

    Google Scholar 

  27. B.W. Shore, Acta Phys. Slov. 63(6), 361–481 (2013)

    Google Scholar 

  28. K. Bergmann, N.V. Vitanov, B.W. Shore, J. Chem. Phys. 142(17), 170901 (2015)

    Article  ADS  Google Scholar 

  29. T. Rickes, J.P. Marangos, T. Halfmann, Opt. Commun. 227, 133 (2003)

    Article  ADS  Google Scholar 

  30. S.A. Myslivets, A.K. Popov, T. Halfmann, J.P. Marangos, T.F. George, Opt. Commun. 209, 335 (2002)

    Article  ADS  Google Scholar 

  31. E. Korsunsky, T. Halfmann, J.P. Marangos, M. Fleisch- hauer, K. Bergmann, Eur. Phys. J. D 23, 167 (2003)

    Article  ADS  Google Scholar 

  32. S. Chakrabarti, H. Muench, T. Halfmann, Phys. Rev. A 82, 063817 (2010)

    Article  ADS  Google Scholar 

  33. A. Chacon, M.F. Ciappina, A. Peralta Conde, Eur. Phys. J. D 69, 5 (2015)

    Article  Google Scholar 

  34. K. Bergamnn, H. Theuer, B.W. Shore, Rev. Mod. Phys. 70, 1003 (1998)

  35. N.V. Vitanov, K.-A. Suominen, B.W. Shore, J. Phys. B 32, 4535–4546 (1999)

    Article  ADS  Google Scholar 

  36. C.J. Taylor, D.J. Kriegman, Minimization on the Lie Group SO(3) and Related Manifolds. Technical Report. No. 9405 (Yale University) (1994)

  37. J.J. Curry, J. Phys. Chem. Ref. Data 33, 3 (2004)

    Article  Google Scholar 

  38. M. Aymar, M. Coulombe, Nucl. Data Tables 21, 537 (1978)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The authors thank N. Song and M. C. González-García for fruitful and stimulating discussions during the development of this manuscript. This work was supported by Ministerio de Economía y Competitividad (Spain) Projects FIS2014-53371-C4-3-R and FIS2014-53371-C4-1-R.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Boyero García.

Appendices

Appendix 1: Mathematical analysis of CPR

Let us consider a two-state system with bare states \(\{|\psi _1\rangle ,|\psi _2\rangle \}\) interacting with a laser field whose frequency \(\omega _{{L}}\) is detuned from the Bohr frequency by \(\Delta = E_{21}-\omega _{{L}}\), where \({E_{21}}={E_{2}}-{E_{1}}\). In the diabatic basis B formed by the states \(\{|\psi _1\rangle ,|\psi _2\rangle \}\), we can define the statevector of the system \(|\Psi (t)\rangle\) as

$$|\Psi (t)\rangle =c_1(t)|\psi _1\rangle +c_2(t)|\psi _2\rangle ,$$
(34)

and consequently the Schrödinger equation can be written as:

$$\left( \begin{array}{c} \dot{c}_1(t) \\ \dot{c}_2(t)\end{array}\right) =-\frac{{i}}{2}\left( \begin{array}{cc} 0 &{} \Omega (t)\\ \Omega (t) &{} 2\Delta \end{array} \right) \left( \begin{array}{c}c_1(t) \\ c_2(t)\end{array}\right) .$$
(35)

The adiabatic basis B’ \(\{|\Phi _-(t)\rangle , |\Phi _+(t)\rangle \}\) that diagonalizes the Hamiltonian of Eq. 6 can be written as

$$\begin{aligned} |\Phi _- (t)\rangle&=\cos \vartheta (t)|\psi _1\rangle - \sin \vartheta (t)|\psi _2\rangle \\ |\Phi _+ (t)\rangle&=\sin \vartheta (t)|\psi _1\rangle +\cos \vartheta (t)|\psi _2\rangle , \end{aligned}$$
(36)

with associated eigenvalues \(\left( \lambda _+(t), \lambda _-(t)\right)\)

$$\lambda _\mp (t)=\frac{1}{2}\left[ \Delta \mp \sqrt{\Omega ^2(t) +\Delta ^2}\right]$$
(37)

where the mixing angle is defined by

$$\vartheta (t)=(1/2)\arctan [\Omega (t)/\Delta ].$$
(38)

Accordingly, the eigenvector of the system in both bases can be the written as

$$|\Psi (t)\rangle =c_1(t)|\psi _1\rangle +c_2(t)|\psi _2\rangle = c_-(t)|\Phi _- (t)\rangle +c_+(t)|\Phi _+ (t)\rangle ,$$
(39)

being the matrix that defines the basis change B’\(\rightarrow\)B defined by

$$R\left[ \vartheta (t)\right] = \left( \begin{array} {cc} \cos \vartheta &{} \sin \vartheta \\ -\sin \vartheta &{} \cos \vartheta \end{array} \right) .$$
(40)

Taking into account that

$$|\Psi (t)\rangle _{{B}}=R\left[ \vartheta (t)\right] |\Psi (t)\rangle _{{B'}}$$
(41)

and

$$H_{{B}}(t)=R\left[ \vartheta (t)\right] H_{{B}'}(t)R^{{T}}\left[ \vartheta (t)\right]$$
(42)

it is possible to express the Schrödinger equation of Eq. 5 in the basis B’:

$$i\hbar \frac{\partial {|\Psi (t)\rangle _{{B}'}}}{\partial t}= \left( H_{{B}'}(t)-i\hbar R^{{T}}\left[ \vartheta (t)\right] \dot{R}\left[ \vartheta (t)\right] \right) |\Psi (t)\rangle _{{B}'}.$$
(43)

According to the previous definition, we can write Eq. 43 as

$$\left( \begin{array}{c} \dot{c}_-(t) \\ \dot{c}_+(t)\end{array}\right) =-{i}\left( \begin{array}{cc} \lambda _- &{} -i\dot{\vartheta }(t)\\ i\dot{\vartheta }(t) &{} \lambda _+ \end{array} \right) \left( \begin{array}{c} c_-(t) \\ c_+(t)\end{array}\right) .$$
(44)

According to Eq. 44 and in a situation where the non-diagonal terms are negligible with respect to the diagonal ones, if the statevector \(|\Psi (t)\rangle\) of the system is initially aligned with one of the adiabatic eigenstates, i.e., \(|\Phi _+(t)\rangle\) or \(|\Phi _-(t)\rangle\), it will remain parallel to it during the whole excitation process, i.e., the system will evolve adiabatically. Mathematically, the adiabatic condition can be expressed as

$$\lambda _+(t)-\lambda _-(t)\gg |\dot{\vartheta }(t)|,$$
(45)

which turns out into the simple expression [25]:

$$|\Delta |\ge \frac{1}{\tau }$$
(46)

being \(\tau\) the laser pulse duration. It is important to notice that the adiabatic region is exclusively determined by the laser detuning with respect to resonance and the duration of the laser pulse (or equivalently the laser bandwidth), being thus independent from the Rabi frequency \(\Omega (t)\). This makes CPR an extremely robust technique for its experimental implementation because these parameters are easily controllable in a real experiment.

Appendix 2: Adiabatic basis projection

Figures 9, 10 and 11 show the square of the components of the vectors \(|\Phi _{{i}}\rangle\), i.e., the projection \(|\langle \psi _{{j}}|\Phi _{{i}}\rangle |^2\) for \(i,j=1,2,3\) as a function of time for a situation where \(\Omega _{{P}}=\Omega _{{S}}=\Omega _{0{p}}\exp {(-t^2/\tau ^2)}\) with \(\tau =6\)  a.u., \(\Delta _{{ S}}=(14/9)\Delta _{{P}}\), and \(\Omega _{0{p}}/\Delta _{{ P}}=50/9\). At the beginning of the interaction, the adiabatic vector aligned with \(|\psi _1\rangle\) (assuming all the population starts in the ground state) is \(|\Phi _2\rangle\), being therefore the statevector of the system parallel to both. The statevector of the system will remain parallel to \(|\Phi _2\rangle\) if the evolution is adiabatic.

Fig. 9
figure 9

(Color online) \(|\Phi _1\rangle\) projection

Fig. 10
figure 10

(Color online) \(|\Phi _2\rangle\) projection

Fig. 11
figure 11

(Color online) \(|\Phi _3\rangle\) projection

Appendix 3: Angle of rotation and axis

Defining the rotation axis \({\mathbf {u}} =(u_{{x}}, u_{{y}}, u_{{z}})\) and with the help of the eigenvalues Z\(_i\) (see Eq. 13) and the normalization parameters \(\xi _i\) (see Eq. 17), the different components can be written as:

$$\begin{aligned} u_{{x}}&= -\frac{a_1}{b_1 \sqrt{\frac{c_1+d_1+e_1+f_1}{g_1}}}\nonumber \\ a_1&= 2 Z_1 \xi _1(Z_1-\Delta _{{P}}+\Delta _{{S}}+Z_3 (-Z_1+Z_3) \xi _3 \Omega _{{S}})\nonumber \\ b_1&= -1+Z_3 \xi _3 \Omega _{{S}}+\xi _1 \Omega _{{P}} (Z_1-\Delta _{{P}}+\Delta _{{S}}-(Z_1-Z_3) (\Delta _{{S}}-\Delta _{{S}}) \xi _3 \Omega _{{S}})\nonumber \\ c_1&= 1+4 Z_1^2 (Z_1-\Delta _{{P}}+\Delta _{{S}})^2 \xi _1^2+4Z_3^4 \xi _3^2-4 Z_3^2 (\Delta _{{P}}-\Delta _{{S}}) (2 Z_3-\Delta _{{P}}+\Delta _{{S}}) \xi _3^2\nonumber \\ d_1& = Z_3 \xi _3 \Omega _{{S}} \left( -2-8Z_1^2 (Z_1-Z_3) (Z_1-\Delta _{{P}}+\Delta _{{S}}) \xi _1^2+Z_3 \left( 1+4 Z_1^2 (Z_1-Z_3)^2\xi _1^2\right) \xi _3 \Omega _{{S}}\right) \nonumber \\ e_1&= \xi _1^2 \Omega _{{P}}^2 ((Z_1-\Delta _{{P}}+\Delta _{{S}})^2 (1+4 (Z_1-Z_3)^2 (Z_3-\Delta _{{P}}+\Delta _{{S}})^2 \xi _3^2)\nonumber \\&\quad+ (Z_1-Z_3) (\Delta _{{P}}-\Delta _{{S}}) \xi _3 \Omega _{{S}} (-2 (Z_1-\Delta _{{P}}+\Delta _{{S}})+(Z_1-Z_3) (\Delta _{{P}}-\Delta _{{S}}) \xi _3 \Omega _{{S}}))\nonumber \\ f_1&= 2 \xi _1 \Omega _{{P}} ((Z_1-\Delta _{{P}}+\Delta _{{S}}) (-1+4 (Z_1-Z_3) Z_3 (Z_3-\Delta _{{P}}+\Delta _{{S}})^2 \xi _3^2 )\nonumber \\&\quad+\xi _3 \Omega _{{S}} (Z_1 (Z_3+\Delta _{{P}}-\Delta _{{S}})+ + 2 Z_3 (-\Delta _{{P}}+\Delta _{{S}})+Z_3 (-Z_1+Z_3) (\Delta _{{P}}-\Delta _{{S}}) \xi _3 \Omega _{{S}}))\nonumber \\ g_1&= (1-Z_3\xi _3 \Omega _{{S}}+\xi _1 \Omega _{{P}} (-Z_1+\Delta _{{P}}-\Delta _{{S}}+(Z_1-Z_3) (\Delta _{{P}}-\Delta _{{S}}) \xi _3 \Omega _{{S}}))^2 \end{aligned}$$
(47)
$$\begin{aligned} u_{{y}}&= \frac{(a_2+b_2)}{\sqrt{c_2-d_2-e_2+f_2}}\nonumber \\ a_2&= 1-Z_3 \xi _3 \Omega _{{S}}\nonumber \\ b_2&= \xi _1 \Omega _{{P}} (-Z_1+\Delta _{{P}}-\Delta _{{S}}+(Z_1-Z_3) (\Delta _{{P}}-\Delta _{{S}}) \xi _3\Omega _{{S}})\nonumber \\ c_2&= 1+4 Z_1^2 (Z_1-\Delta _{{P}}+\Delta _{{S}})^2 \xi _1^2+4 Z_3^4 \xi _3^2-4 Z_3^2(\Delta _{{P}}-\Delta _{{S}}) (2 Z_3-\Delta _{{P}}+\Delta _{{S}}) \xi _3^2\nonumber \\ d_2&= Z_3 \xi _3 \Omega _{{S}} (-2-8 Z_1^2 (Z_1-Z_3) (Z_1-\Delta _{{P}}+\Delta _{{S}}) \xi _1^2+Z_3(1+4 Z_1^2 (Z_1-Z_3)^2\xi _1^2) \xi _3 \Omega _{{S}})\nonumber \\ e_2&= \ \xi _1^2 \Omega _{{P}}^2 ((Z_1-\Delta _{{P}}+\Delta _{{S}})^2 (1+4 (Z_1-Z_3)^2 (Z_3-\Delta _{{P}}+\Delta _{{S}})^2 \xi _3^2)+\nonumber \\&\quad+ (Z_1-Z_3) (\Delta _{{P}}-\Delta _{{S}}) \xi _3 \Omega _{{S}} (-2 (Z_1-\Delta _{{P}}+\Delta _{{S}})+(Z_1-Z_3) (\Delta _{{P}}-\Delta _{{S}}) \xi _3 \Omega _{{S}}))\nonumber \\ f_2= & {} 2 \xi _1\Omega _{{P}} ((Z_1-\Delta _{{P}}+\Delta _{{S}}) (-1+4 (Z_1-Z_3) Z_3 (Z_3-\Delta _{{P}}+\Delta _{{S}})^2 \xi _3^2)\nonumber \\&\quad+\xi _3 \Omega _{{S}} (Z_1 (Z_3+\Delta _{{P}}-\Delta _{{S}})+ +2 Z_3 (-\Delta _{{P}}+\Delta _{{S}})+Z_3 (-Z_1+Z_3)(\Delta _{{P}}-\Delta _{{S}}) \xi _3 \Omega _{{S}})) \end{aligned}$$
(48)
$$\begin{aligned} u_{{z}}&= \frac{a_3}{b_3 \sqrt{\frac{c_3+d_3+e_3+f_3}{g_3}}}\nonumber \\ a_3&= 2 (Z_3-\Delta _{{P}}+\Delta _{{S}}) \xi _3 (Z_3+(Z_1-Z_3) (Z_1-\Delta _{{P}}+\Delta _{{S}}) \xi _1 \Omega _{{P}}) \nonumber \\ b_3&= 1-Z_3 \xi _3 \Omega _{{S}}+\xi _1 \Omega _{{P}} (-Z_1+\Delta _{{P}}-\Delta _{{S}}+(Z_1-Z_3)(\Delta _{{P}}-\Delta _{{S}}) \xi _3 \Omega _{{S}}) \nonumber \\ c_3&= 1+4 Z_1^2 (Z_1-\Delta _{{P}}+\Delta _{{S}})^2 \xi _1^2+4 Z_3^4 \xi _3^2-4 Z_3^2 (\Delta _{{P}}-\Delta _{{S}}) (2 Z_3-\Delta _{{P}}+\Delta _{{S}}) \xi _3^2 \nonumber \\ d_3&= Z_3 \xi _3 \Omega _{{S}} (-2-8 Z_1^2 (Z_1-Z_3) (Z_1-\Delta _{{P}}+\Delta _{{S}})\xi _1^2+Z_3 (1+4 Z_1^2 (Z_1-Z_3)^2 \xi _1^2) \xi _3 \Omega _{{S}}) \nonumber \\ e_3&= \xi _1^2 \Omega _{{P}}^2 ((Z_1-\Delta _{{P}}+\Delta _{{S}})^2 (1+4 (Z_1-Z_3)^2 (Z_3-\Delta _{{P}}+\Delta _{{S}})^2 \xi _3^2)+\nonumber \\&\quad+ (Z_1-Z_3) (\Delta _{{P}}-\Delta _{{S}}) \xi _3 \Omega _{{S}} (-2 (Z_1-\Delta _{{P}}+\Delta _{{S}})+(Z_1-Z_3) (\Delta _{{P}}-\Delta _{{S}}) \xi _3 \Omega _{{S}})) \nonumber \\ f_3&= 2 \xi _1 \Omega _{{P}} ((Z_1-\Delta _{{P}}+\Delta _{{S}}) (-1+4 (Z_1-Z_3) Z_3 (Z_3-\Delta _{{P}}+\Delta _{{S}})^2 \xi _3^2)\nonumber \\&\quad+\xi _3 \Omega _{{S}} (Z_1 (Z_3+\Delta _{{P}}-\Delta _{{S}}) + 2 Z_3 (-\Delta _{{P}}+\Delta _{{S}})+Z_3 (-Z_1+Z_3) (\Delta _{{P}}-\Delta _{{S}}) \xi _3 \Omega _{{S}})) \nonumber \\ g_3&= (1-Z_3\xi _3 \Omega _{{S}}+\xi _1 \Omega _{{P}} (-Z_1+\Delta _{{P}}-\Delta _{{S}}+(Z_1-Z_3) (\Delta _{{P}}-\Delta _{{S}}) \xi _3 \Omega _{{S}}))^2 \end{aligned}$$
(49)

Figure 12 shows the components \(u_{{x}}, u_{{y}}\) and \(u_{{z}}\) as a function of time.

Fig. 12
figure 12

(Color online) Components \(u_{{x}}, u_{{y}}\) and \(u_{{z}}\) of the rotation axis as a function of time for a situation where \(\Omega _{{P}}=\Omega _{{S}}=\Omega _{0{p}}\exp {(-t^2/\tau ^2)}\) with \(\tau =6\)  a.u., \(\Delta _{{S}}=2\Delta _{{P}}\), and \(\Omega _{0{p}}/\Delta _{{P}}=4\)

The rotation angle \(\alpha\) (see Eq. 23) can be written as:

$$\alpha =\arccos \frac{u_{{x}}^2-Z_1 \xi _1\Omega _{{P}}+(\Delta _{{P}}-\Delta _{{S}}) \xi _1 \Omega _{{P}}}{u_{{x}}^2-1}$$
(50)

Figure 13 shows the angle of rotation \(\alpha\) as a function of time.

Fig. 13
figure 13

(Color online) Angle of rotation \(\alpha\) as a function of time for the same parameters that Fig. 12

Appendix 4: Adiabatic conditions

The evolution of the system will be diabatic if the following conditions, assuming \(\Omega _{{P,S}}\rightarrow 0\), are fullfilled

$$\begin{aligned} \left| Z_1-Z_2 \right| =\left| p\left( \cos \frac{\theta }{3}-\frac{\sqrt{3}}{3}\sin \frac{\theta }{3}\right) \right|&= 0\\ \left| Z_3-Z_2 \right| =\left| \frac{2\sqrt{3}}{3}p\sin \frac{\theta }{3}\right|&= 0. \end{aligned}$$
(51)

A possible solution of these equations is \(p=0\), being p defined by Eqs. 12 and 14. Since \(\Omega _{{P,S}}\rightarrow 0\), the different parameters can be written as

$$\begin{aligned} a&=-\left( 2\Delta _{{P}}-\Delta _{{S}}\right) \\ b&=\Delta _{{P}}\left( \Delta _{{P}}-\Delta _{{S}}\right) \\ c&=0 \end{aligned}$$
(52)

and

$$p=\sqrt{a^2-3b}=\sqrt{\Delta _{{P}}^2+\Delta _{{S}}^2-\Delta _{{P}}\Delta _{{S}}}=0$$
(53)

whose solution is \(\Delta _{{P}}=\Delta _{{S}}=0\). The rest of solutions are:

  1. 1.

    \(\left| \cos \frac{\theta }{3}-\frac{\sqrt{3}}{3}\sin \frac{\theta }{3}\right| =0\)

    $$\begin{aligned} \tan \frac{\theta }{3}&=\sqrt{3}\\ \theta&= \pi +3n\pi \\ \end{aligned}$$

    Using the expression for the angle \(\theta\) (see Eq. 15), we obtain for \(n=0\):

    $$\begin{aligned} &\cos \theta =\cos \,\pi =-1\\ &-\frac{-27c+2a^3-9ab}{2p^3}=-1\\ &-2\Delta _{P}^3+3\Delta _{P}^2\Delta _{S}+3\Delta _{P} \Delta _{S}^2-2\Delta _{S}^3\\ &\quad +2\left( \Delta _{P}^2-\Delta _{P}\Delta _{S}+\Delta _{S}^2\right)^{3/2}=0. \end{aligned}$$
    (54)

    This last equation has two different solutions, namely

    $$\begin{aligned} \Delta _{{P}}&=0\\ \Delta _{{P}}&=\Delta _{{S}}. \end{aligned}$$
    (55)
  2. 2.

    \(\left| \frac{2\sqrt{3}}{3}\sin \frac{\theta }{3}\right| =0\)

    Operating in the same way we obtain

    $$\begin{aligned} \sin \frac{\theta }{3}&=0\\ \theta&=0+3n\pi .\\ \end{aligned}$$

    Therefore, for \(n=0\), we obtain

    $$\begin{aligned} &\cos \theta =\cos \,0=1\\ &-\frac{-27c+2a^3-9ab}{2p^3}=1\\ &-2\Delta _{P}^3+3\Delta _{P}^2\Delta _{S}+3\Delta _{P} \Delta _{S}^2-2\Delta _{S}^3\\ &\quad -2\left( \Delta _{P}^2 -\Delta _{P}\Delta _{S}+\Delta _{S}^2 \right)^{3/2}=0. \end{aligned}$$
    (56)

    This last equation with a correct election of the signs of the square root has the following solutions:

    $$\begin{aligned} \Delta _{{P}}&=0\\ \Delta _{{P}}&=\Delta _{{S}}. \end{aligned}$$
    (57)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boyero García, R., Carpentier, A.V., Gómez-Cadenas, J.J. et al. A novel technique to achieve atomic macro-coherence as a tool to determine the nature of neutrinos. Appl. Phys. B 122, 262 (2016). https://doi.org/10.1007/s00340-016-6532-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-016-6532-7

Keywords

Navigation