Skip to main content
Log in

The effect of skin-depth interfacial defect layer in perovskite solar cell

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

The hole transport buffer layer (HTL) known as PEDOT:PSS is found to be sensitive to polar solvents often used in the preparation of solution-processed perovskite-based solar cell. We employed \(\hbox {CH}_{3}\,\hbox {NH}_{3}\,\hbox {PbI}_{3}\) perovskite absorber sandwiched between two charge transport layers to analyze the effect of precursor solvent. By introducing skin-depth interfacial defect layer (IDL) on PEDOT:PSS film we studied the overall performance of the devices using one-dimensional device simulator. Both enhanced conductivity and variations in valence band offset (VBO) of IDL were considered to analyze device performance. A power conversion efficiency (PCE) of the devices was found to grow by 35 % due to increased conductivity of IDL by a factor of 1000. Furthermore, we noted a drastic reduction in PCE of the device by reducing the work function of IDL by more than 0.3eV . The thickness of interfacial defect layer was also analyzed and found to decrease the PCE of the devices by 18 % for fourfold increase in IDL thickness. The analysis was remarkably reproduced the experimentally generated device parameters and will help to understand the underlying physical process in perovskite-based solar cell.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Q. Dong, Y. Fang, Y. Shao, P. Mulligan, J. Qiu, L. Cao, J. Huang, Electron-hole diffusion lengths 175 mm in solution-grown \(\text{ CH }_{3}\,\text{ NH }_{3}\,\text{ PbI }_{3}\) single crystals. Science 347(6225), 968–970 (2015)

    Article  ADS  Google Scholar 

  2. Y. Chen, J. Peng, S. Diqing, X. Chen, Z. Liang, Efficient and balanced charge transport revealed in planar perovskite solar cells. ACS Appl. Mater. Interfaces 7, 4471–4475 (2015)

    Article  Google Scholar 

  3. Y.-C. Hsiao, W. Ting, M. Li, Q. Liu, W. Qin, H. Bin, Fundamental physics behind high-efficiency organo-metal halide perovskite solar cells. J. Mater. Chem. A 3, 15372–15385 (2015)

    Article  Google Scholar 

  4. S. Luo, W.A. Daoud, Recent progress in organic-inorganic halide perovskite solar cells: mechanisms and material design. J. Mater. Chem. A 3, 8992–9010 (2015)

    Article  Google Scholar 

  5. G.T. Mola, Enhanced photon harvesting in OPV using optical reflective surface. Appl. Phys. A: Mater. Sci. & Process. 118, 425–429 (2015)

    Article  ADS  Google Scholar 

  6. G. Tessema, Charge transport across bulk-heterojunction organic thin film. Appl. Phys. A: Mater. Sci. & Process. 106, 53–57 (2012)

    Article  ADS  Google Scholar 

  7. W.S. Yang, J.H. Noh, N.J. Jeon, Y.C. Kim, S. Ryu, J. Seo, S.I. Seok, High-performance photovoltaic perovskite layers fabricated through intramolecular exchange. Science 348(6240), 1234–1237 (2015)

    Article  ADS  Google Scholar 

  8. W. Zhang, X. Bi, X. Zhao, Z. Zhao, J. Zhu, S. Dai, L. Yalin, S. Yang, Isopropanol-treated PEDOT:PSS as electron transport layer in polymer solar cells. Organ. Electron. 15, 3445–3451 (2014)

    Article  Google Scholar 

  9. T.-R. Chou, S.-H. Chen, Y.-T. Chiang, Y.-T. Lina, C.-Y. Chao, Highly conductive PEDOT:PSS films by posttreatment with dimethyl sulfoxide for ITO-free liquid crystal display. J. Mater. Chem. C 3(15), 3760–3766 (2015)

    Article  Google Scholar 

  10. O.P. Dimitrieva, D.A. Grinkoa, Y.V. Noskovb, N.A. Ogurtsovb, A.A. Pud, PEDOT:PSS films effect of organic solvent additives and annealing on the film conductivity. Synth. Metals 159, 2237–2239 (2009)

    Article  Google Scholar 

  11. X. Zhang, J. Wu, J. Wang, J. Zhang, Q. Yang, Y. Fu, Z. Xie, Highly conductive PEDOT:PSS transparent electrode prepared by a post-spin-rinsing method for efficient ITO-free polymer solar cells. Solar Energy Mater. Solar Cells 144, 143–149 (2015)

    Article  Google Scholar 

  12. S.-I. Na, G. Wang, S.-S. Kim, T.-W. Kim, O. Seung-Hwan, Y. Byung-Kwan, T. Leea, D.-Y. Kim, Evolution of nanomorphology and anisotropic conductivity in solvent-modified PEDOT:PSS films for polymeric anodes of polymer solar cells. J. Mater. Chem. 19, 9045–9053 (2009)

    Article  Google Scholar 

  13. L.-C. Chen, J.-C. Chen, C.-C. Chen, W. Chun-Guey, Fabrication and properties of high-efficiency perovskite/PCBM organic solar cells. Nanoscale Res. Lett. 10, 312 (2015)

    Article  ADS  Google Scholar 

  14. Y. Xia, K. Sun, J. Chang, J. Ouyang, Effects of organic inorganic hybrid perovskite materials on the electronic properties and morphology of poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) and the photovoltaic performance of planar perovskite solar cells. J. Mater. Chem. A 3, 15897–15904 (2015)

    Article  Google Scholar 

  15. W. Chun-Guey, C.-H. Chiang, Z.-L. Tseng, K. Md Nazeeruddin, A. Hagfeldt, M. Gratzel, High efficiency stable inverted perovskite solar cells without current hysteresis. Energy Environ. Sci. 8, 2725–2733 (2015)

    Article  Google Scholar 

  16. P. Docampo, J.M. Ball, M. Darwich, G.E. Eperon, H.J. Snaith. Efficient organometal trihalide perovskite planar-heterojunction solar cells on flexible polymer substrates. Nat. Commun. 4(2761) 2013

  17. S.A. Rutledge, A.S. Helmy, Carrier mobility enhancement in poly(3,4-ethylenedioxythiophene)-poly (styrenesulfonate) having undergone rapid thermal annealing. J. Appl. Phys 114, 133708 (2013)

    Article  ADS  Google Scholar 

  18. M. Burgelman, P. Nollet, S. Degrave, Modelling polycrystalline semiconductor solar cells. Thin Solid Films 361(362), 527–532 (2000)

    Article  ADS  Google Scholar 

  19. T. Minemoto, M. Murata, Device modeling of perovskite solar cells based on structural similarity with thin film inorganic semiconductor solar cells. J. Appl. Phys. 116, 054505 (2014)

    Article  ADS  Google Scholar 

  20. D. Shi, V. Adinolfi, R. Comin, M. Yuan, E. Alarousu, A. Buin, Y. Chen, S. Hoogland, A. Rothenberger, K. Katsiev, Y. Losovyj, X. Zhang, P.A. Dowben, O.F. Mohammed, E.H. Sargent, O.M. Bakr, Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals. Science 347(6221), 519–522 (2015)

    Article  ADS  Google Scholar 

  21. M. Saidaminov, A.L. Abdelhady, B. Murali, E. Alarousu, V.M. Burlakov, W. Peng, I. Dursun, L. Wang, Y. He, G. Maculan, A. Goriely, T. Wu, O.F. Mohammed, O.M. Bakr, High-quality bulk hybrid perovskite single crystals within minutes by inverse temperature crystallization. Nat. Commun. 6, 7586 (2015)

    Article  ADS  Google Scholar 

  22. V.D. Mihailetchi, J.K. Van Duren, P.W.M. Blom, J.C. Hummelen, R.A.J. Janssen, J.M. Kroon, M.T. Rispens, W.J.H. Verhees, M.M. Wienk, Electron transport in methanofullerene. Adv. Funct. Mater. 13, 44 (2013)

    Google Scholar 

  23. T. Minemoto, Y. Hashimoto, T. Satoh, T. Negami, H. Takakura, Y. Hamakawa, Cu(In, Ga)Se2 solar cells with controlled conduction band offset of window/Cu(In, Ga)Se2 layers. J. Appl. Phys. 89, 8327–8330 (2001)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Professor Marc Burgelman, University of Gent, for the development of the SCAPS software package and allowing us for use and Dr. Mulugeta Bekele, Department of Physics, AAU, for helpfully encouraging to do the work. This work is supported by the International Programs in the Physical Science (IPPS), Sweden, and National Research Foundation (NRF), South Africa.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Genene Tessema Mola.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gebremichael, B., Mola, G.T. The effect of skin-depth interfacial defect layer in perovskite solar cell. Appl. Phys. B 122, 215 (2016). https://doi.org/10.1007/s00340-016-6492-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-016-6492-y

Keywords

Navigation