Skip to main content
Log in

Tuneable dual-comb spectrometer based on commercial femtosecond lasers and reference cell for optical frequency calibration

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

Two commercial femtosecond laser sources have been used to implement a dual-comb spectrometer tuneable across a spectral range from 1.5 to 2.2 μm. The optical linewidth of the comb modes was characterized for different time scales in order to estimate the achievable spectral resolution for an optimal acquisition time. The transmission spectra of three different gas samples were recorded, demonstrating good agreement with reference data. Frequency axis calibration was provided via the parallel monitoring of a reference sample. This technique allows an accurate calibration of the frequency axis of the spectrometer, with no need for stabilization or optical referencing of the frequency combs. Our set-up represents a good compromise for a compact and versatile dual-comb spectrometer based on commercially available parts with possible applications in trace-gas monitoring, remote sensing and spectroscopy of short-lived processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. D.W. Van der Weide, F. Keilmann, US5748309 (1998)

  2. T. Udem, R. Holzwarth, T.W. Hänsch, Nature 416, 233 (2002)

    Article  ADS  Google Scholar 

  3. S. Schiller, Opt. Lett. 27, 766 (2002)

    Article  ADS  Google Scholar 

  4. F. Keilmann, C. Gohle, R. Holzwarth, Opt. Lett. 29, 1542 (2004)

    Article  ADS  Google Scholar 

  5. A. Schliesser, M. Brehm, F. Keilmann, D. van der Weide, Opt. Express 13, 9029 (2005)

    Article  ADS  Google Scholar 

  6. I. Coddington, W.C. Swann, N.R. Newbury, Phys. Rev. Lett. 100, 013902 (2008)

    Article  ADS  Google Scholar 

  7. I. Coddington, W.C. Swann, N.R. Newbury, Phys. Rev. A 82, 043817 (2010)

    Article  ADS  Google Scholar 

  8. E. Baumann, F.R. Giorgetta, W.C. Swann, A.M. Zolot, I. Coddington, N.R. Newbury, Phys. Rev. A 84, 062513 (2011)

    Article  ADS  Google Scholar 

  9. A.M. Zolot, F.R. Giorgetta, E. Baumann, J.W. Nicholson, W.C. Swann, I. Coddington, N.R. Newbury, Opt. Lett. 37, 638 (2012)

    Article  ADS  Google Scholar 

  10. P. Giaccari, J.-D. Deschênes, P. Saucier, J. Genest, P. Tremblay, Opt. Express 16, 4347 (2008)

    Article  ADS  Google Scholar 

  11. J.-D. Deschênes, P. Giaccarri, J. Genest, Opt. Express 18, 23358 (2010)

    Article  ADS  Google Scholar 

  12. J. Roy, J.-D. Deschênes, S. Potvin, J. Genest, Opt. Express 20, 21932 (2012)

    Article  ADS  Google Scholar 

  13. M. Cassinerio, A. Gambetta, N. Coluccelli, P. Laporta, G. Galzerano, Appl. Phys. Lett. 104, 231102 (2014)

    Article  ADS  Google Scholar 

  14. T. Ideguchi, A. Poisson, G. Guelachvili, T.W. Hänsch, N. Picqué, Opt. Lett. 37, 4847 (2012)

    Article  ADS  Google Scholar 

  15. T. Ideguchi, A. Poisson, G. Guelachvili, N. Picqué, T.W. Hänsch, Nat. Commun. 5, 3375 (2014)

    Article  ADS  Google Scholar 

  16. B. Bernhardt, E. Sorokin, P. Jacquet, R. Thon, T. Becker, I.T. Sorokina, N. Picqué, T.W. Hänsch, Appl. Phys. B Lasers Opt. 100, 3 (2010)

    Article  ADS  Google Scholar 

  17. G.B. Rieker, F.R. Giorgetta, W.C. Swann, J. Kofler, A.M. Zolot, L.C. Sinclair, E. Baumann, C. Cromer, G. Petron, C. Sweeney, P.P. Tans, I. Coddington, N.R. Newbury, Optica 1, 290 (2014)

    Article  Google Scholar 

  18. D.A. Long, A.J. Fleisher, K.O. Douglass, S.E. Maxwell, K. Bielska, J.T. Hodges, D.F. Plusquellic, Opt. Lett. 39, 2688 (2014)

    Article  ADS  Google Scholar 

  19. B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T.W. Hänsch, N. Picqué, Nat. Photonics 4, 55 (2009)

    Article  ADS  Google Scholar 

  20. G. Villares, A. Hugi, S. Blaser, J. Faist, Nat. Commun. 5, 5192 (2014)

    Article  ADS  Google Scholar 

  21. P. Martin-Mateos, M. Ruiz-Llata, J. Posada-Roman, P. Acedo, IEEE Photonics Technol. Lett. 27, 1309 (2015)

    Article  ADS  Google Scholar 

  22. G. Millot, S. Pitois, M. Yan, T. Hovannysyan, A. Bendahmane, T.W. Hänsch, N. Picqué, Nat. Photonics 10, 27 (2016)

    Article  ADS  Google Scholar 

  23. http://www.spectracalc.com

  24. https://www.cfa.harvard.edu/hitran/

  25. https://www-s.nist.gov/srmors/view_detail.cfm?srm=2519A

  26. S. Okubo, K. Iwakuni, H. Inaba, K. Hosaka, A. Onae, H. Sasada, F.L. Hong, Appl. Phys. Express 8, 082402 (2015)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Dr. L. Rossini for valuable discussions on signal processing algorithms. This work was funded by the Commission for Technology and Innovation, Project No. CTI 13458.1 PFFLR-NM and by the Canton of Neuchâtel.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Portuondo-Campa.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Portuondo-Campa, E., Bennès, J., Balet, L. et al. Tuneable dual-comb spectrometer based on commercial femtosecond lasers and reference cell for optical frequency calibration. Appl. Phys. B 122, 196 (2016). https://doi.org/10.1007/s00340-016-6473-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-016-6473-1

Keywords

Navigation