Skip to main content
Log in

Ultrafast three-wave-mixing in plasmonic nanostructures

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

We present a perturbative approach to the time-domain computation of three-wave-mixing signals from plasmonic nanostructures. Based on a hydrodynamic material model which features nonlinear as well as nonlocal characteristics, we compute the ultrafast response of electrons in metals in a perturbative manner, where fundamental waves and second-order response are evaluated separately. This allows us to examine the source distribution of the second-order nonlinear response originating from the fundamental waves in a consistent manner that takes the nonlocal characteristics of the system into account. We validate this framework by comparing with the results of the fully nonlinear model and apply it to the study of three-wave-mixing enhancements from nanoplasmonic antennas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. M. Kauranen, A.V. Zayats, Nonlinear plasmonics. Nat. Photon. 6, 737–748 (2012)

    Article  ADS  Google Scholar 

  2. N.B. Grosse, J. Heckmann, U. Woggon, Nonlinear plasmon-photon interaction resolved by k-space spectroscopy. Phys. Rev. Lett. 108(13), 136802 (2012)

    Article  ADS  Google Scholar 

  3. M. Corvi, W.L. Schaich, Hydrodynamic-model calculation of second-harmonic generation at a metal surface. Phys. Rev. B 33, 3688–3695 (1986)

    Article  ADS  Google Scholar 

  4. J.E. Sipe, V.C.Y. So, M. Fukui, G.I. Stegeman, Analysis of second-harmonic generation at metal surfaces. Phys. Rev. B 21, 4389–4402 (1980)

    Article  ADS  Google Scholar 

  5. N. Bloembergen, Nonlinear optics and spectroscopy. Rev. Mod. Phys. 54, 685–695 (1982)

    Article  ADS  Google Scholar 

  6. J.A. Armstrong, N. Bloembergen, J. Ducuing, P.S. Pershan, Interactions between light waves in a nonlinear dielectric. Phys. Rev. 127, 1918–1939 (1962)

    Article  ADS  Google Scholar 

  7. N.A. Mortensen et al., A generalized non-local optical response theory for plasmonic nanostructures. Nat. Commun. 5, 3809 (2014). doi:10.1038/ncomms4809

    ADS  Google Scholar 

  8. T. Christensen, W. Yan, S. Raza, A.-P. Jauho, N.A. Mortensen, M. Wubs, Nonlocal response of metallic nanospheres probed by light, electrons, and atoms. ACS Nano 8(2), 1745–1758 (2014)

    Article  Google Scholar 

  9. C. Ciracì, J.B. Pendry, D.R. Smith, Hydrodynamic model for plasmonics: a macroscopic approach to a microscopic problem. ChemPhysChem 14(6), 1109–1116 (2013)

    Article  Google Scholar 

  10. G. Toscano, S. Raza, A.P. Jauho, N.A. Mortensen, M. Wubs, Modified field enhancement and extinction by plasmonic nanowire dimers due to nonlocal response. Opt. Express 20(4), 4176–4188 (2012)

    Article  ADS  Google Scholar 

  11. K.R. Hiremath, L. Zschiedrich, F. Schmidt, Numerical solution of nonlocal hydrodynamic drude model for arbitrary shaped nano-plasmonic structures using ndlec finite elements. J. Comput. Phys. 231(17), 5890–5896 (2012)

    Article  ADS  Google Scholar 

  12. S. Raza, G. Toscano, A.-P. Jauho, M. Wubs, N.A. Mortensen, Unusual resonances in nanoplasmonic structures due to nonlocal response. Phys. Rev. B 84, 121412 (2011)

    Article  ADS  Google Scholar 

  13. I. Villó-Pérez, N.R. Arista, Hydrodynamical model for bulk and surface plasmons in cylindrical wires. Surf. Sci. 603(1), 1–13 (2009)

    Article  ADS  Google Scholar 

  14. R. Ruppin, Extinction properties of thin metallic nanowires. Opt. Commun. 190(1), 205–209 (2001)

    Article  ADS  Google Scholar 

  15. P. Ahlqvist, P. Apell, On the hydrodynamical theory for surface plasmons. Phys. Scr. 25(4), 587 (1982)

    Article  ADS  Google Scholar 

  16. A. Eguiluz, J.J. Quinn, Hydrodynamic model for surface plasmons in metals and degenerate semiconductors. Phys. Rev. B 14, 1347–1361 (1976)

    Article  ADS  Google Scholar 

  17. J.A. Maytorena, W.L. Mochán, B.S. Mendoza, Hydrodynamic model for second-harmonic generation at conductor surfaces with continuous profiles. Phys. Rev. B 51, 2556–2562 (1995)

    Article  ADS  Google Scholar 

  18. J.A. Maytorena, W.L. Mochán, B.S. Mendoza, Hydrodynamic model for sum and difference frequency generation at metal surfaces. Phys. Rev. B 57, 2580–2585 (1998)

    Article  ADS  Google Scholar 

  19. K. Huang, Statistical Mechanics (Wiley, London, 1987)

    MATH  Google Scholar 

  20. M. Wakano, Foundations for a treatment of the scattering of light by the hydrodynamical and statistical atom model. J. Math. Phys. 2(6), 803–824 (1961)

    Article  ADS  MathSciNet  Google Scholar 

  21. P. Halevi, Hydrodynamic model for the degenerate free-electron gas: generalization to arbitrary frequencies. Phys. Rev. B 51, 7497–7499 (1995)

    Article  ADS  Google Scholar 

  22. A. Hille, M. Moeferdt, C. Wolff, C. Matyssek, R. Rodrguez-Oliveros, C. Prohm, J. Niegemann, S. Grafström, L.M. Eng, K. Busch, Second harmonic generation from metal nano-particle resonators: numerical analysis on the basis of the hydrodynamic drude model. J. Phys. Chem. C 120(2), 1163–1169 (2016)

    Article  Google Scholar 

  23. N. Bloembergen, R.K. Chang, S.S. Jha, C.H. Lee, Optical second-harmonic generation in reflection from media with inversion symmetry. Phys. Rev. 174, 813–822 (1968)

    Article  ADS  Google Scholar 

  24. J.S. Hesthaven, T. Warburton, Nodal Discontinuous Galerkin Methods: Algorithms, Analysis, and Applications (Springer, Berlin, 2007)

    MATH  Google Scholar 

  25. P.B. Johnson, R.W. Christy, Optical constants of the noble metals. Phys. Rev. B 6, 4370–4379 (1972)

    Article  ADS  Google Scholar 

  26. K. Busch, M. König, J. Niegemann, Discontinuous galerkin methods in nanophotonics. Laser Photon. Rev. 5(6), 773–809 (2011)

    Article  Google Scholar 

  27. S.G. Johnson, Notes on perfectly matched layers (PMLs). Lecture notes, vol. 5, no. 5.3 (Massachusetts Institute of Technology, Massachusetts, 2008), p. 2

  28. J. Schöberl, Netgen an advancing front 2d/3d-mesh generator based on abstract rules. Comput. Vis. Sci. 1(1), 41–52 (1997)

    Article  MATH  Google Scholar 

  29. A. Taflove, S.C. Hagness, Computational Electrodynamics (Artech House, Norwood, MA, 2000)

    MATH  Google Scholar 

  30. A. Sundaramurthy, K.B. Crozier, G.S. Kino, D.P. Fromm, P.J. Schuck, W.E. Moerner, Field enhancement and gap-dependent resonance in a system of two opposing tip-to-tip au nanotriangles. Phys. Rev. B 72, 165409 (2005)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dan-Nha Huynh.

Additional information

This article is part of the topical collection “Ultrafast Nanooptics” guest edited by Martin Aeschlimann and Walter Pfeiffer.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huynh, DN., Moeferdt, M., Matyssek, C. et al. Ultrafast three-wave-mixing in plasmonic nanostructures. Appl. Phys. B 122, 139 (2016). https://doi.org/10.1007/s00340-016-6411-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-016-6411-2

Keywords

Navigation