Skip to main content
Log in

Polarization dependence of plasmonic near-field enhanced photoemission from cross antennas

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

The field enhancement of individual cross-shaped nanoantennas for normal incident light has been measured by the relative photoemission yield using a photoemission electron microscope. We not only measured the electron yield in dependence on the intensity of infrared light (800 nm, 100 fs), but also the polarization dependence. In the normal incidence geometry, the electrical field vector of the illuminating light lies in the surface plane of the sample, independent of the polarization state. Strong yield variations due to an out-of-plane field component as well as changes in the polarization state described by the Fresnel laws are avoided. The electron yield is related to the near-field enhancement as a function of the polarization state of the incident light. The polarization dependence is well explained by numerical simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. U. Kreibig, M. Vollmer, Optical Properties of Metal Clusters (Springer, New York, 1995)

    Book  Google Scholar 

  2. D.P. Fromm, A. Sundaramurthy, P.J. Schuck, G. Kino, W.E. Moerner, Gap-dependent optical coupling of single bowtie nanoantennas resonant in the visible. Nano Lett. 4, 957 (2004)

    Article  ADS  Google Scholar 

  3. L. Novotny, B. Hecht, Principles of Nano-optics (Cambridge University Press, Cambridge, 2006)

    Book  Google Scholar 

  4. E. Prodan, C. Radloff, N.J. Halas, P. Nordlander, A hybridization model for the plasmon response of complex nanostructures. Science 302, 5644 (2003)

    Article  Google Scholar 

  5. P. Nordlander, C. Oubre, E. Prodan, K. Li, M.I. Stockman, Plasmon hybridizaton in nanoparticle dimers. Nano Lett. 4, 899 (2004)

    Article  ADS  Google Scholar 

  6. P. Nordlander, F. Le, Plasmonic structure and electromagnetic field enhancements in the metallic nanoparticle-film system. Appl. Phys. B 84, 35 (2006)

    Article  ADS  Google Scholar 

  7. T. Okamoto, I. Yamaguchi, Optical absorption study of the surface plasmon resonance in gold nanoparticles immobilized onto a gold substrate by self-assembly technique. J. Phys. Chem. B 107, 10321 (2003)

    Article  Google Scholar 

  8. Y. Uchiho, K. Kajikawa, Evaluation of gap distance between gold nanospheres and a gold substrate by absorption spectroscopy. Chem. Phys. Lett. 478, 211 (2009)

    Article  ADS  Google Scholar 

  9. S. Linic, P. Christopher, D.B. Ingram, Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy. Nat. Mater. 10, 911 (2011)

    Article  ADS  Google Scholar 

  10. S.F. Heucke, F. Baumann, G.P. Acuna, P.M.D. Severin, S.W. Stahl, M. Strackharn, I.H. Stein, P. Altpeter, P. Tinnefeld, H.E. Gaub, Placing individual molecules in the center of nanoapertures. Nano Lett. 14(2), 391–395 (2013)

    Article  ADS  Google Scholar 

  11. C.D. Stanciu, F. Hansteen, A.V. Kimel, A. Kirilyuk, A. Tsukamoto, A. Itoh, T. Rasing, All-optical magnetic recording with circularly polarized light. Phys. Rev. Lett. 99, 047601 (2007)

    Article  ADS  Google Scholar 

  12. P. Klaer, F. Schertz, G. Schönhense, H.J. Elmers, Spin-polarized photoelectrons resonantly excited by circularly polarized light from a fractional Ag film on GaAs(100). Phys. Rev. B 88, 214425 (2013)

    Article  ADS  Google Scholar 

  13. P. Biagioni, J.S. Huang, L. Duò, M. Finazzi, B. Hecht, Cross resonant optical antenna. Phys. Rev. Lett. 102, 256801 (2009)

    Article  ADS  Google Scholar 

  14. R. Mohammadi, A. Unger, H.J. Elmers, G. Schönhense, M.Z. Shushtari, M. Kreiter, Manipulating near field polarization beyond the diffraction limit. Appl. Phys. B 104, 65 (2011)

    Article  ADS  Google Scholar 

  15. C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, O. Wilson, P. Mulvaney, Drastic reduction of plasmon damping in gold nanorods. Phys. Rev. Lett. 88, 077402 (2002)

    Article  ADS  Google Scholar 

  16. M.I. Stockman, Nanoscience dark-hot resonances. Nature 467, 541 (2010)

    Article  ADS  Google Scholar 

  17. F. Schertz, M. Schmelzeisen, R. Mohammadi, M. Kreiter, H.-J. Elmers, G. Schönhense, Near field of strongly coupled plasmons: uncovering dark modes. Nano Lett. 12, 1885 (2012)

    Article  ADS  Google Scholar 

  18. P. Klaer, G. Razinskas, M. Lehr, K. Krewer, F. Schertz, W. Xiao-Fei, B. Hecht, G. Schönhense, H.J. Elmers, Photoemission electron microscopy and finite-element simulation of plasmonic angular momentum confinement in cross resonant optical antennas. Appl. Phys. Lett. 106, 261101 (2015)

    Article  ADS  Google Scholar 

  19. M. Bauer, A. Marienfeld, M. Aeschlimann, Prog. Surf. Sci. 90, 319 (2015)

    Article  ADS  Google Scholar 

  20. N.E. Karatzas, A.T. Georges, Opt. Commun. 81, 479 (2006)

    Google Scholar 

  21. M. Aeschlimann, T. Brixner, A. Fischer, C. Kramer, P. Melchior, W. Pfeiffer, C. Schneider, C. Struber, P. Tuchscherer, D. Voronine, Science 333, 1723 (2011)

    Article  ADS  Google Scholar 

  22. M. Schnell, A. Garcia-Etxarri, J. Alkorta, J. Aizpurua, R. Hillenbrand, Phase-resolved mapping of the near-field vector and polarization state in nanoscale antenna gaps. Nano Lett. 10, 3524 (2010)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The authors are grateful for financial support from the Deutsche Forschungsgemeinschaft (DFG EL/16-2, SPP1391) and by the Research Center for Complex and Emergent Materials (CINEMA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. J. Elmers.

Additional information

This article is part of the topical collection “Ultrafast Nanooptics” guest edited by Martin Aeschlimann and Walter Pfeiffer.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Klaer, P., Razinskas, G., Lehr, M. et al. Polarization dependence of plasmonic near-field enhanced photoemission from cross antennas. Appl. Phys. B 122, 136 (2016). https://doi.org/10.1007/s00340-016-6410-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-016-6410-3

Keywords

Navigation