Skip to main content
Log in

Characterization of single coal particle combustion within oxygen-enriched environments using high-speed OH-PLIF

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

This work presents first-of-its-kind high-speed planar laser-induced fluorescence measurements of the hydroxyl radical in the boundary layer of single coal particles. Experiments were performed in a laminar flow reactor providing an oxygen-enriched exhaust gas environment at elevated temperatures. Single coal particles in a sieve fraction of 90–125 µm and a significant amount of volatiles (36 wt%) were injected along the burner’s centerline. Coherent anti-Stokes Raman spectroscopy measurements were taken to characterize the gas-phase temperature. Time-resolved imaging of the OH distribution at 10 kHz allowed identifying reaction and post-flame zones and gave access to the temporal evolution of burning coal particles. During volatile combustion, a symmetric diffusion flame was observed around the particle starting from a distance of ~150 µm from the particle surface. For subsequent char combustion, this distance decreased and the highest OH signals appeared close to the particle surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. B. Metz, O. Davidson, H.C. de Coninck, M. Loos, L.A. Meyer, Carbon dioxide Capture and Storage (Cambridge University Press, Cambridge, 2005)

  2. H.-Y. Cai, Fuel 75(1), 15–24 (1996)

    Article  Google Scholar 

  3. R.H. Essenhigh, M.K. Misra, D.W. Shaw, Combust. Flame 77, 3–30 (1989)

    Article  Google Scholar 

  4. R.C. Shurtz, K.K. Kolste, T.H. Fletcher, Energy Fuels 25, 2163–2173 (2011)

    Article  Google Scholar 

  5. Y. Liu, M. Geier, A. Molina, C.R. Shaddix, Int. J. Greenh. Gas Control 5, S36–S46 (2011)

    Article  Google Scholar 

  6. R. Khatami, C. Stivers, Y.A. Levendis, Combust. Flame 159, 3554–3568 (2012)

    Article  Google Scholar 

  7. B. Goshayeshi, J.C. Sutherland, Combust. Flame 161, 1900–1910 (2014)

    Article  Google Scholar 

  8. E.S. Hecht, C.R. Shaddix, J.S. Lighty, Combust. Flame 160, 1499–1509 (2013)

    Article  Google Scholar 

  9. M. Geier, C.R. Shaddix, K.A. Davis, H.-S. Shim, Appl. Energy 93, 675–679 (2012)

    Article  Google Scholar 

  10. R.E. Mitchell, R.J. Kee, P. Glarborg, M.E. Coltrin, Proc. Combust. Inst. 23(1), 1169–1176 (1991)

    Article  Google Scholar 

  11. C. Gonzalo-Tirado, S. Jiménez, R. Johansson, J. Ballester, Combust. Flame 161, 1085–1095 (2014)

    Article  Google Scholar 

  12. A. Molina, C.R. Shaddix, Proc. Combust. Inst. 31, 1905–1912 (2007)

    Article  Google Scholar 

  13. A. Molina, J.J. Murphy, C.R. Shaddix, L.G. Blevins, Proc. Combust. Inst. 30, 2187–2195 (2005)

    Article  Google Scholar 

  14. C.R. Shaddix, A. Molina, Proc. Combust. Inst. 32, 2091–2098 (2009)

    Article  Google Scholar 

  15. M. Taniguchi, H. Okazaki, H. Kobayashi, S. Azuhata, H. Miyadera, H. Muto, T. Tsumura, J. Energy Resour. Technol. 123, 32 (2001)

    Article  Google Scholar 

  16. H. Lee, S. Choi, Combust. Flame 162, 2610–2620 (2015)

    Article  Google Scholar 

  17. P.A. Bejarano, Y.A. Levendis, Combust. Flame 153, 270–287 (2008)

    Article  Google Scholar 

  18. M. Schiemann, V. Scherer, S. Wirtz, Chem. Eng. Technol. 32, 2000–2004 (2009)

    Article  Google Scholar 

  19. M. Schiemann, N. Vorobiev, V. Scherer, Appl. Opt. 54, 1097 (2015)

    Article  ADS  Google Scholar 

  20. L. Zhang, E. Binner, Y. Qiao, C.-Z. Li, Energy Fuels 24, 29–37 (2010)

    Article  Google Scholar 

  21. E.P. Hassel, S. Linow, Meas. Sci. Technol. 11, R37 (2000)

    Article  ADS  Google Scholar 

  22. S. Balusamy, M.M. Kamal, S.M. Lowe, B. Tian, Y. Gao, S. Hochgreb. Exp. Fluids 56, 108 (2015)

    Article  Google Scholar 

  23. S.M. Hwang, R. Kurose, F. Akamatsu, H. Tsuji, H. Makino, M. Katsuki, Energy Fuels 19, 382–392 (2005)

    Article  Google Scholar 

  24. N. Darabiha, P. Scouflaire, M. Xia, B. Fiorina, in ECM (2015)

  25. N. Vorobiev, M. Schiemann, in 40th International Technical Conference on Clean Coal Fuel System, Clearwater, Florida, USA (2015), pp. 550–561

  26. A. Singh, M. Mann, T. Kissel, J. Brübach, A. Dreizler, Flow Turbul. Combust. 90, 723–739 (2013)

    Article  Google Scholar 

  27. P.J. Trunk, I. Boxx, C. Heeger, W. Meier, B. Böhm, A. Dreizler, Proc. Combust. Inst. 34, 3565–3572 (2013)

    Article  Google Scholar 

  28. R.L. Gordon, C. Heeger, A. Dreizler, Appl. Phys. B 96, 745–748 (2009)

    Article  ADS  Google Scholar 

  29. E.S. Hecht, C.R. Shaddix, M. Geier, A. Molina, B.S. Haynes, Combust. Flame 159, 3437–3447 (2012)

    Article  Google Scholar 

  30. L. Tognotti, J.P. Longwell, A.F. Sarofim, Proc. Combust. Inst. 23, 1207–1213 (1991)

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the sponsorship of the Deutsche Forschungsgemeinschaft through SFB/TRR 129, subprojects A02 and B05. A. Dreizler is grateful for generous support through the Gottfried Wilhelm Leibniz program of Deutsche Forschungsgemeinschaft.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Köser.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Köser, J., Becker, L.G., Vorobiev, N. et al. Characterization of single coal particle combustion within oxygen-enriched environments using high-speed OH-PLIF. Appl. Phys. B 121, 459–464 (2015). https://doi.org/10.1007/s00340-015-6253-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-015-6253-3

Keywords

Navigation