Skip to main content
Log in

Sensing of gaseous HF at low part-per-trillion levels using a tunable 2.5-µm diode laser spectrometer operating at ambient pressure

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

We demonstrate a sensor based on tunable diode laser absorption spectroscopy for the detection of hydrogen fluoride (HF) gas at ambient pressure. Absorption from the HF R(1) ro-vibrational peak at ν̃ = 4038.962 cm−1 (2.476 µm) in the fundamental (Δν = 1) band is measured. A quantitative spectral fit based on HITRAN data is used to account for overlapping spectral peaks of HF and water vapor, with an rms residual noise of 5 × 10−4 absorbance units. The sensor is optimized for the detection of transient variations in HF concentration. We measure noise-equivalent concentrations for HF of 38 parts-per-trillion by volume (ppt) for 1-s integration times and 2.3 ppt for 10-min integration times.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. C.P. Rinsland, R. Zander, E. Mahieu, L.S. Chiou, A. Goldman, N.B. Jones, J. Quant. Spectrosc. Radiat. Transf. 74(2), 205–216 (2002)

    Article  ADS  Google Scholar 

  2. A.V. Polyakov, Y.M. Timofeev, A.V. Poberovskii, I.S. Yagovkina, Izv. Atmos. Ocean. Phys. 47(6), 760–765 (2011)

    Article  Google Scholar 

  3. R.B. Symonds, W.I. Rose, M.H. Reed, Nature 334(6181), 415–418 (1988)

    Article  ADS  Google Scholar 

  4. K.W. Koepenick, S.L. Brantley, J.M. Thompson, G.L. Rowe, A.A. Nyblade, C. Moshy, J. Geophys. Res. 101(B6), 13819 (1996)

    Article  ADS  Google Scholar 

  5. R.A. Craddock, R. Greeley, Icarus 204(2), 512–526 (2009)

    Article  ADS  Google Scholar 

  6. I. Linnerud, P. Kaspersen, T. Jaeger, Appl. Phys. B 67(3), 297–305 (1998)

    Article  ADS  Google Scholar 

  7. N. Dando, W. Xu, J.N. Peace, J. Occup. Environ. Hyg. 5(2), 67–74 (2007)

    Article  Google Scholar 

  8. S. Skolnik, J. Occup. Environ. Hyg. 7(6), D31–D33 (2010)

    Article  Google Scholar 

  9. N. Xu, D.R. Pirkle, J.B. Jeffries, B. McMillin, R.K. Hanson, J. Vac. Sci. Technol. 22(6), 2479 (2004)

    Article  ADS  Google Scholar 

  10. W.G. Mankin, M.T. Coffey, J. Geophys. Res. 88(C15), 10776 (1983)

    Article  ADS  Google Scholar 

  11. K.L. McNesby, R. Reed Skaggs, A.W. Miziolek, M. Clay, S.H. Hoke, C.S. Miser, Appl. Phys. B 67(4), 443–447 (1998)

    Article  ADS  Google Scholar 

  12. W.A. de Groot, R.R. Skaggs, R.G. Daniel, A.W. Miziolek, K.L. McNesby, C. Herud, W.R. Bolt, D. Horton, in Proceedings of SPIE, p. 3535 (1999)

  13. H.M. Heise, R. Kurte, J. Mol. Struct. 651–653, 555–559 (2003)

    Article  Google Scholar 

  14. United States Environmental Protection Agency (EPA). Hydrogen Fluoride Hazard Summary. http://www.epa.gov/ttn/atw/hlthef/hydrogen.html. Accessed Nov 2013

  15. United States Occupational Safety & Health Administration. Chemical Sampling Information | Hydrogen Fluoride (as F). http://www.osha.gov/dts/chemicalsampling/data/CH_246500.html. Accessed Nov 2013

  16. M.P. Chipperfield, M. Burton, W. Bell, C.P. Walsh, T. Blumenstock, M.T. Coffey, J.W. Hannigan, W.G. Mankin, B. Galle, J. Mellqvist, E. Mahieu, R. Zander, J. Notholt, B. Sen, G.C. Toon, J. Geophys. Res. 102(D11), 12901 (1997)

    Article  ADS  Google Scholar 

  17. E. Mahieu, P. Duchatelet, P. Demoulin, K.A. Walker, E. Dupuy, L. Froidevaux, C. Randall, V. Catoire, K. Strong, C.D. Boone, P.F. Bernath, J.F. Blavier, T. Blumenstock, M. Coffey, M. De Mazière, D. Griffith, J. Hannigan, F. Hase, N. Jones, K.W. Jucks, A. Kagawa, Y. Kasai, Y. Mebarki, S. Mikuteit, R. Nassar, J. Notholt, C.P. Rinsland, C. Robert, O. Schrems, C. Senten, D. Smale, J. Taylor, C. Tétard, G.C. Toon, T. Warneke, S.W. Wood, R. Zander, C. Servais, Atmos. Chem. Phys. 8(20), 6199–6221 (2008)

    Article  ADS  Google Scholar 

  18. V.A. Velazco, G.C. Toon, J.-F.L. Blavier, A. Kleinböhl, G.L. Manney, W.H. Daffer, P.F. Bernath, K.A. Walker, C. Boone, J. Geophys. Res. 116(D6), D06306 (2011)

    ADS  Google Scholar 

  19. A. Fried, B.P. Wert, A. Fried, B.E. Henry, J.R. Drummond, in Conference on Application of Tunable Diode and Other Infrared Sources for Atmospheric Studies and Industrial Processing Monitoring II, p. 3758 (1999)

  20. R. Zander, Geophys. Res. Lett. 8(4), 413–416 (1981)

    Article  ADS  Google Scholar 

  21. Hydrogen Chloride and Hydrogen Fluoride (HCl, HF) in Atmospheric ozone 1985Assessment of our understanding of the processes controlling its present distribution and change, edn. (World Meteorological Organization, Geneva, 1985)

  22. P. Werle, Spectrochim. Acta, Part A 54(2), 197–236 (1998)

    Article  Google Scholar 

  23. M. Lackner, Rev. Chem. Eng. 23(2), 65–147 (2007)

    Article  Google Scholar 

  24. D.R. Herriott, H.J. Schulte, Appl. Opt. 4(8), 883 (1965)

    Article  ADS  Google Scholar 

  25. A. O’Keefe, Chem. Phys. Lett. 293(5–6), 331–336 (1998)

    Article  ADS  Google Scholar 

  26. A. O’Keefe, J.J. Scherer, J.B. Paul, Chem. Phys. Lett. 307(5–6), 343–349 (1999)

    Article  ADS  Google Scholar 

  27. S. Krevor, J.-C. Perrin, A. Esposito, C. Rella, S. Benson, Int. J. Greenh. Gas Control 4(5), 811–815 (2010)

    Article  Google Scholar 

  28. A.C. De Luca, G. Pesce, G. Rusciano, A. Sasso, Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 63(5), 923–928 (2006)

    Article  ADS  Google Scholar 

  29. K.L. McNesby, R.G. Daniel, A.W. Miziolek, S.H. Modiano, Appl. Spectrosc. 51(5), 678–683 (1997)

    Article  ADS  Google Scholar 

  30. N. Xu, D.R. Pirkle, J.B. Jeffries, B. McMillin, R.K. Hanson, J. Vac. Sci. Technol. A 22(6), 2479 (2004)

    Article  ADS  Google Scholar 

  31. J.A. Gupta, P.J. Barrios, J. Lapointe, G.C. Aers, C. Storey, Appl. Phys. Lett. 95(4), 041104 (2009)

    Article  ADS  Google Scholar 

  32. B.F. Ventrudo, C. Storey, J.A. Gupta, A. Bezinger, Electron. Lett. 48(2), 114 (2012)

    Article  Google Scholar 

  33. L.S. Rothman, I.E. Gordon, Y. Babikov, A. Barbe, D. Chris Benner, P.F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L.R. Brown, A. Campargue, K. Chance, E.A. Cohen, L.H. Coudert, V.M. Devi, B.J. Drouin, A. Fayt, J.M. Flaud, R.R. Gamache, J.J. Harrison, J.M. Hartmann, C. Hill, J.T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R.J. Le Roy, G. Li, D.A. Long, O.M. Lyulin, C.J. Mackie, S.T. Massie, S. Mikhailenko, H.S.P. Müller, O.V. Naumenko, A.V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E.R. Polovtseva, C. Richard, M.A.H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G.C. Toon, V.G. Tyuterev, G. Wagner, J. Quant. Spectrosc. Radiat. Transf. 130, 4–50 (2013)

    Article  ADS  Google Scholar 

  34. A.S. Pine, J.P. Looney, J. Mol. Spectrosc. 122(1), 41–55 (1987)

    Article  ADS  Google Scholar 

  35. R.A. Toth, Linelist of water vapor parameters from 500 to 8000 cm−1. http://mark4sun.jpl.nasa.gov/h2o.html. Accessed Jan 2013

  36. D. Jacquemart, R. Gamache, L.S. Rothman, J. Quant. Spectrosc. Radiat. Transf. 96(2), 205–239 (2005)

    Article  ADS  Google Scholar 

  37. G. Li, I.E. Gordon, R.J. Le Roy, P.G. Hajigeorgiou, J.A. Coxon, P.F. Bernath, L.S. Rothman, J. Quant. Spectrosc. Radiat. Transf. 121, 78–90 (2013)

    Article  ADS  Google Scholar 

  38. S.I. Chou, D.S. Baer, R.K. Hanson, J. Mol. Spectrosc. 196(1), 70–76 (1999)

    Article  ADS  Google Scholar 

  39. A.S. Pine, A. Fried, J. Mol. Spectrosc. 114(1), 148–162 (1985)

    Article  ADS  Google Scholar 

  40. S.I. Chou, D.S. Baer, R.K. Hanson, J. Mol. Spectrosc. 195(1), 123–131 (1999)

    Article  ADS  Google Scholar 

  41. G. Guelachvili, M.A.H. Smith, J. Quant. Spectrosc. Radiat. Transf. 20(1), 35–47 (1978)

    Article  ADS  Google Scholar 

  42. S.W. Sharpe, T.J. Johnson, R.L. Sams, P.M. Chu, G.C. Rhoderick, P.A. Johnson, Appl. Spectrosc. 58(12), 1452–1461 (2004)

    Article  ADS  Google Scholar 

  43. L.L. Gordley, B.T. Marshall, D.A. Chu, J. Quant. Spectrosc. Radiat. Transf. 52(5), 563–580 (1994)

    Article  ADS  Google Scholar 

  44. L.S. Rothman, C.P. Rinsland, A. Goldman, S.T. Massie, D.P. Edwards, J.M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.Y. Mandin, J. Schroeder, A. McCann, R.R. Gamache, R.B. Wattson, K. Yoshino, K.V. Chance, K.W. Jucks, L.R. Brown, V. Nemtchinov, P. Varanasi, J. Quant. Spectrosc. Radiat. Transf. 60(5), 665–710 (1998)

    Article  ADS  Google Scholar 

  45. B.M. Quine, J.R. Drummond, J. Quant. Spectrosc. Radiat. Transf. 74(2), 147–165 (2002)

    Article  ADS  Google Scholar 

  46. M. Birk, G. Wagner, J. Quant. Spectrosc. Radiat. Transf. 113(11), 889–928 (2012)

    Article  ADS  Google Scholar 

  47. L. Lodi, J. Tennyson, J. Quant. Spectrosc. Radiat. Transf. 113(11), 850–858 (2012)

    Article  ADS  Google Scholar 

  48. J.Y. Mandin, C. Camy-Peyret, J.M. Flaud, G. Guelachvili, Can. J. Phys. 60(1), 94–101 (1982)

    Article  ADS  Google Scholar 

  49. L.S. Rothman, R.R. Gamache, A. Goldman, L.R. Brown, R.A. Toth, H.M. Pickett, R.L. Poynter, J.M. Flaud, C. Camy-Peyret, A. Barbe, N. Husson, C.P. Rinsland, M.A. Smith, Appl. Opt. 26(19), 4058–4097 (1987)

    Article  ADS  Google Scholar 

  50. L.S. Rothman, I.E. Gordon, R.J. Barber, H. Dothe, R.R. Gamache, A. Goldman, V.I. Perevalov, S.A. Tashkun, J. Tennyson, J. Quant. Spectrosc. Radiat. Transf. 111(15), 2139–2150 (2010)

    Article  ADS  Google Scholar 

  51. L.S. Rothman, D. Jacquemart, A. Barbe, D. Chris Benner, M. Birk, L.R. Brown, M.R. Carleer, C. Chackerian, K. Chance, L.H. Coudert, V. Dana, V.M. Devi, J.M. Flaud, R.R. Gamache, A. Goldman, J.M. Hartmann, K.W. Jucks, A.G. Maki, J.Y. Mandin, S.T. Massie, J. Orphal, A. Perrin, C.P. Rinsland, M.A.H. Smith, J. Tennyson, R.N. Tolchenov, R.A. Toth, J. Vander Auwera, P. Varanasi, G. Wagner, J. Quant. Spectrosc. Radiat. Transf. 96(2), 139–204 (2005)

    Article  ADS  Google Scholar 

  52. J. Tennyson, P.F. Bernath, L.R. Brown, A. Campargue, A.G. Császár, L. Daumont, R.R. Gamache, J.T. Hodges, O.V. Naumenko, O.L. Polyansky, L.S. Rothman, A.C. Vandaele, N.F. Zobov, A.R. Al Derzi, C. Fábri, A.Z. Fazliev, T. Furtenbacher, I.E. Gordon, L. Lodi, I.I. Mizus, J. Quant. Spectrosc. Radiat. Transf. 117, 29–58 (2013)

    Article  ADS  Google Scholar 

  53. M.C. Phillips, M.S. Taubman, B.E. Bernacki, B.D. Cannon, R.D. Stahl, J.T. Schiffern, T.L. Myers, Analyst 139(9), 2047–2056 (2014)

    Article  ADS  Google Scholar 

  54. Joel A. Silver, Appl. Opt. 44(31), 6545 (2005)

    Article  ADS  Google Scholar 

  55. S.G. Johnson, Faddeeva Package—AbInitio. http://abinitio.mit.edu/wiki/index.php/Faddeeva_Package. Accessed 23 June 2013

  56. W. Wagner, A. Pruß, J. Phys. Chem. Ref. Data 31(2), 387–535 (2002)

    Article  ADS  Google Scholar 

  57. J.A. Silver, A.C. Slanton, Appl. Opt. 27(10), 1914–1916 (1988)

    Article  ADS  Google Scholar 

  58. J. Reid, M. El-Sherbiny, B.K. Garside, E.A. Ballik, Appl. Opt. 19(19), 3349–3353 (1980)

    Article  ADS  Google Scholar 

  59. F.K. Tittel, D. Richter, A. Fried, Mid-Infrared Laser Applications in Spectroscopy, in Solid-State Mid-Infrared Laser Sources, ed. by I.T. Sorokina, K.L. Vodopyanov (Springer, Berlin, 2003)

    Google Scholar 

  60. F. Berghmans, M. Dressler, G. Helmrich, H. Harde, A.G. Mignani, A. Cutolo, P.P. Meyrueis, T.P. Pearsall, in Proceedings of the Society of Photo-Optical Instrumentation Engineers, p. 7003 (2008)

Download references

Acknowledgments

The authors would like to thank Charles Brown and the PNNL Health Monitoring & Radio Frequency Sensors group for the use of their environmental chamber. The Pacific Northwest National Laboratory is operated for the US Department of Energy (DOE) by the Battelle Memorial Institute under Contract No. DE-AC05-76RL01830.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark C. Phillips.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Craig, I.M., Cannon, B.D., Taubman, M.S. et al. Sensing of gaseous HF at low part-per-trillion levels using a tunable 2.5-µm diode laser spectrometer operating at ambient pressure. Appl. Phys. B 120, 505–515 (2015). https://doi.org/10.1007/s00340-015-6159-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-015-6159-0

Keywords

Navigation