Skip to main content
Log in

Combination of silicon phase masks with time-domain spectroscopy for single-scan terahertz imaging

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

We demonstrate the effectiveness of silicon phase masks to implement spatially resolved, multispectral imaging capabilities in the range of terahertz frequencies, using a standard setup of basic interest for time-domain spectrometry with a single-cell source and a single-cell detector. Our principle primarily aims at the development of robust and inexpensive systems. It consists of appropriate space-to-time encoding, in order to ensure single-scan triggering and then take advantage of rapid and self-consistent measurements in the two-dimensional space. The process enables very efficient discrimination giving access to a relevant spatial resolution in the analysis of small size, planar assemblies made of inhomogeneous materials. Benchmark results are provided to validate the concept, thanks to prototyping phase masks with 2 × 2 pixels, prior evidencing actual performance limitations in the case of 3 × 3 pixels. Due to the frequency bandwidth of 0.1–1.5 THz in our setup and to the available operating conditions, currently acceptable pixel resolutions lie in the range of 3–4 mm. Numerical modeling by means of finite elements helps to discuss these numbers and to investigate the relevant theoretical issues, figuring the main propagation issues in connection with a sub-picosecond seed pulse throughout various masks. This involves diffraction and trailing edge effects when crossing the mask together with residual, parasitic reflections. Finally, we give a consistent prospective for improved performance, via realistic updates regarding the architecture of the setup and complementary post-processing. Further values for the attainable spatial resolution then range from 5 × 5 to 6 × 6 pixels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. C. Jansen, S. Wietzke, O. Peters, M. Scheller, N. Vieweg, M. Salhi, N. Krumbholz, C. Jördens, T. Hochrein, M. Koch, Terahertz imaging: applications and perspectives. Appl. Opt. 49(19), E48–E57 (2010)

    Article  ADS  Google Scholar 

  2. S. Vidal, J. Degert, J. Oberlé, E. Freysz, Femtosecond optical pulse shaping for tunable terahertz pulse generation. J. Opt. Soc. Am. B 27(5), 1044–1050 (2010)

    Article  ADS  Google Scholar 

  3. T. Yasui, K.I. Sawanaka, A. Ihara, E. Abraham, M. Hashimoto, T. Araki, Real-time terahertz color scanner for moving objects. Opt. Express 16, 1208 (2008)

    Article  ADS  Google Scholar 

  4. J. Shan, A.S. Weling, E. Knoesel, L. Bartels, Single-shot measurement of terahertz electromagnetic pulses by use of electro-optic sampling. Opt. Lett. 25, 426 (2000)

    Article  ADS  Google Scholar 

  5. A. Brahm, A. Wilms, R.J.B. Dietz, T. Göbel, M. Schell, G. Notni, A. Tünnermann, Imaging with a multichannel terahertz time-domain spectroscopy system at 1030 nm excitation wavelength. Opt. Express 22, 12982 (2014)

    Article  ADS  Google Scholar 

  6. K.Y. Kim, B. Yellampalle, A.J. Taylor, G. Rodriguez, J.H. Glownia, Single-shot terahertz pulse characterization via two-dimensional electro-optic imaging with dual echelons. Opt. Lett. 32(14), 1968–1970 (2007)

    Article  ADS  Google Scholar 

  7. J. O’Hara, D. Grischkowsky, Synthetic phased-array terahertz imaging. Opt. Lett. 27(12), 1070–1072 (2002)

    Article  ADS  Google Scholar 

  8. R. Yano, H. Gotoh, Y. Hirayama, T. Hattori, S. Miyashita, Synthesis of terahertz electromagnetic wave pulses using amplitude-and-phase masks. Chem. Phys. 326, 577–582 (2006)

    Article  ADS  Google Scholar 

  9. L. Duvillaret, F. Garet, J.L. Coutaz, A reliable method for extraction of material parameters in terahertz-time-domain spectroscopy. IEEE J. Sel. Top. Quantum Electron. 2, 739 (1996)

    Article  Google Scholar 

  10. J.A. Hejase, E.J. Rothwell, P. Chahal, Self-calibrating technique for terahertz time-domain material parameter extraction. J. Opt. Soc. Am. A: 28(12), 2561–2567 (2011)

    Article  ADS  Google Scholar 

  11. I. Pupeza, R. Wilk, M. Koch, Highly accurate optical material parameter determination with THz time-domain spectroscopy. Opt. Express 15, 4335 (2007)

    Article  ADS  Google Scholar 

  12. J. Dai, J. Zhang, W. Zhang, D. Grischkowsky, Terahertz time-domain spectroscopy characterization of the far-infrared absorption and index of refraction of high-resistivity, float-zone silicon. J. Opt. Soc. Am. B 21(7), 1379–1385 (2004)

    Article  ADS  Google Scholar 

  13. Y. Hirakawa, Y. Ohno, T. Gondoh, T. Mori, K. Takeya, M. Tonouchi, H. Ohtake, T. Hirosumi, Nondestructive evaluation of rubber compounds by terahertz time-domain spectroscopy. J Infrared Millim Terahertz Waves 32, 1457–1463 (2011)

    Article  Google Scholar 

  14. I. Hernandez-Serrano, S.C. Corzo-Garcia, E. Garcia-Sanchez, M. Alfaro, E. Castro-Camus, Quality control of leather by terahertz time-domain spectroscopy. Appl. Opt. 53(33), 7872–7876 (2014)

    Article  ADS  Google Scholar 

  15. T. Lu, Z. Qing-Li, Z. Kun, S.Y. Lei, Z. Dong-Mei, Z. Song-Qing, Z. Hui, B. Ri-Ma, Z. Shou-Ming, M. Qing, Z. Cun-Lin, Consistency-dependent optical properties of lubricating grease studied by terahertz spectroscopy. Chin. Phys. B 20(1), 010703-1–010703-5 (2011)

    Google Scholar 

  16. M. Scheller, Real-time terahertz material characterization by numerical three-dimensional optimization. Opt. Express 19(11), 10647–10655 (2011)

    Article  ADS  Google Scholar 

  17. T.D. Dorney, R.G. Baraniuk, D.M. Mittleman, Material parameter estimation with terahertz time-domain spectroscopy. J. Opt. Soc. Am. A: 18(7), 1562–1571 (2001)

    Article  ADS  Google Scholar 

  18. P. Kuzel, M.A. Khazan, J. Kroupa, Spatio temporal transformations of ultrashort terahertz pulses. J. Opt. Soc. Am. B 16, 1795 (1999)

    Article  ADS  Google Scholar 

  19. J. Bromage, S. Radic, G.P. Agrawal, C.R. Stroud Jr, Spatiotemporal shaping of half-cycle terahertz pulses by diffraction through conductive apertures of finite thickness. J. Opt. Soc. Am. B 15(4), 1399–1405 (1998)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The financial support of the Conseil Régional d’Aquitaine is greatly acknowledged. This work was completed within the frame of the cluster Route des Lasers. The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Jolly.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jolly, A., Gokhan, F.S., Jolly, JC. et al. Combination of silicon phase masks with time-domain spectroscopy for single-scan terahertz imaging. Appl. Phys. B 120, 441–450 (2015). https://doi.org/10.1007/s00340-015-6153-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-015-6153-6

Keywords

Navigation