Skip to main content
Log in

The effect of wavefront aberrations in atom interferometry

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

Wavefront aberrations are one of the largest uncertainty factors in present atom interferometers. We present a detailed numerical and experimental analysis of this effect based on measured aberrations from optical windows. By placing windows into the Raman beam path of our atomic gravimeter, we verify for the first time the induced bias in very good agreement with theory. Our method can be used to reduce the uncertainty in atomic gravimeters by one order of magnitude, resulting in an error of <3 × 10−10g, and it is suitable in a wide variety of atom interferometers with thermal or ultracold atoms. We discuss the limitations of our method, potential improvements, and its role in future generation experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. M.A. Kasevich, S. Chu, Phys. Rev. Lett. 67(2), 181–184 (1991)

    Article  ADS  Google Scholar 

  2. A. Peters, K.-Y. Chung, S. Chu, Metrologia 38, 25 (2001)

    Article  ADS  Google Scholar 

  3. T. Farah, C. Guerlin, A. Landragin, P. Bouyer, S. Gaffet, F. Pereira Dos Santos, S. Merlet, Gyrosc. Navig. 5(4), 266–274 (2014)

    Article  Google Scholar 

  4. Z.-K. Hu, B.-L. Sun, X.-C. Duan, M.-K. Zhou, L.-L. Chen, S. Zhan, Q.-Z. Zhang, J. Luo, Phys. Rev. A 88, 043610 (2013)

    Article  ADS  Google Scholar 

  5. M. Hauth, C. Freier, V. Schkolnik, A. Senger, M. Schmidt, A. Peters, Appl. Phys. B 113(1), 49–55 (2013)

    Article  ADS  Google Scholar 

  6. J.M. McGuirk, G.T. Foster, J.B. Fixler, M.J. Snadden, M.A. Kasevich, Phys. Rev. A 65, 033608 (2002)

    Article  ADS  Google Scholar 

  7. T.L. Gustavson, A. Landragin, M.A. Kasevich, Class. Quantum Grav. 17(12), 2385 (2000)

    Article  ADS  MATH  Google Scholar 

  8. A. Wicht, J. Hensley, E. Sarajlic, S. Chu, Phys. Scr. 2002, 82 (2002)

    Article  Google Scholar 

  9. G. Rosi, F. Sorrentino, L. Cacciapuoti, M. Prevedelli, G.M. Tino, Nature 510, 518–521 (2014)

    Article  ADS  Google Scholar 

  10. D. Schlippert, J. Hartwig, H. Albers, L. Richardson, L.C. Schubert, A. Roura, P. Schleich, W.W. Ertmer, E.M. Rasel, Phys. Rev. Lett. 112, 203002 (2014)

    Article  ADS  Google Scholar 

  11. J. Hogan, D. Johnson, S. Dickerson, T. Kovachy, A. Sugarbaker, S.-W. Chiow, P. Graham, M. Kasevich, B. Saif, S. Rajendran, P. Bouyer, B. Seery, L. Feinberg, R. Keski-Kuha, Gen. Relat. Gravit. 43(7), 1953–2009 (2011)

    Article  ADS  Google Scholar 

  12. T.M. Niebauer, G.S. Sasagawa, J.E. Faller, R. Hilt, F. Klopping, Metrologia 32(3), 159 (1995)

    Article  ADS  Google Scholar 

  13. P. Gillot, O. Francis, A. Landragin, F.P.D. Santos, S. Merlet, Metrologia 51(5), L15 (2014)

    Article  ADS  Google Scholar 

  14. Y. Bidel, O. Carraz, R. Charrière, M. Cadoret, N. Zahzam, A. Bresson, Appl. Phys. Lett. 102(14), 144107 (2013). doi:10.1063/1.4801756

    Article  ADS  MATH  Google Scholar 

  15. S.-Y. Lan, P.-C. Kuan, B. Estey, P. Haslinger, H. Müller, Phys. Rev. Lett. 108, 1–5 (2012)

    Article  MATH  Google Scholar 

  16. M. Hauth, C. Freier, V. Schkolnik, A. Peters, H. Wziontek, M. Schilling, in Proceedings of the International School of Physics “Enrico Fermi”, vol. 188 (IOS Press, Varenna, 2014), pp. 557–586

  17. A. Louchet-Chauvet, T. Farah, Q. Bodart, A. Clairon, A. Landragin, S. Merlet, F.P.D. Santos, N. J. Phys. 13, 065025 (2011)

    Article  MATH  Google Scholar 

  18. M. Schmidt, M. Prevedelli, A. Giorgini, G.M. Tino, A. Peters, Appl. Phys. B 102, 11–18 (2010)

    Article  ADS  Google Scholar 

  19. P. Berthoud, E. Fretel, P. Thomann, Phys. Rev. A 60, R4241–R4244 (1999)

    Article  ADS  Google Scholar 

  20. M. Drewsen, P. Laurent, A. Nadir, G. Santarelli, A. Clairon, Y. Castin, D. Grison, C. Salomon, Appl. Phys. B 59(3), 283–298 (1994)

    Article  ADS  Google Scholar 

  21. M. Kasevich, D.S. Weiss, E. Riis, K. Moler, S. Kasapi, S. Chu, Phys. Rev. Lett. 66, 2297–2300 (1991)

    Article  ADS  Google Scholar 

  22. A.J. Kerman, V. Vuletić, C. Chin, S. Chu, Phys. Rev. Lett. 84, 439–442 (2000)

    Article  ADS  Google Scholar 

  23. T. Farah, P. Gillot, B. Cheng, A. Landragin, S. Merlet, F. Pereira Dos Santos, Phys. Rev. A 90, 023606 (2014)

    Article  ADS  Google Scholar 

  24. S.M. Dickerson, J.M. Hogan, A. Sugarbaker, D.M.S. Johnson, M.A. Kasevich, Phys. Rev. Lett. 111, 083001 (2013)

    Article  ADS  Google Scholar 

  25. C. Schubert, J. Hartwig, H. Ahlers, K. Posso-Trujillo, N. Gaaloul, U. Velte, A. Landragin, A. Bertoldi, B. Battelier, P. Bouyer, F. Sorrentino, G.~M. Tino, M. Krutzik, A. Peters, S. Herrmann, C. Lämmerzahl, L. Cacciapouti, E. Rocco, K. Bongs, W. Ertmer, E.~M. Rasel, (2013). arXiv:1312.5963

Download references

Acknowledgments

This work is supported by the European Science Foundation and the Deutsche Forschungsgemeinschaft (EuroQuasar-IQS, PE 904/2-1 and PE 904/4-1). We thank Andreas W. Schell for fruitful discussions and for helping with the data analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Schkolnik.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schkolnik, V., Leykauf, B., Hauth, M. et al. The effect of wavefront aberrations in atom interferometry. Appl. Phys. B 120, 311–316 (2015). https://doi.org/10.1007/s00340-015-6138-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-015-6138-5

Keywords

Navigation