Skip to main content
Log in

Control of thermal effects in fast-switching femtosecond UV laser system

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

Femtosecond laser systems are becoming essential tools in various areas of material processing, medicine and scientific research. In order to tailor the wavelength of radiation to the absorptivity of materials being processed, UV harmonic generators are often employed. At high average powers and high repetition rates, the long warm-up time of harmonic generators, caused by UV absorption in nonlinear crystals, can be a serious obstacle for efficient and fast processing. To increase the speed and reduce the cost of technological processes, new methods are required to speed up the settling of the output power when the harmonic generators are switched on after longer idle period. We have investigated a fourth-harmonic generator of a high-repetition rate femtosecond laser and studied the properties of the output radiation in order to optimize its fast-switching capabilities. Theoretical modeling of thermal effects in the nonlinear crystal allowed us to explain temporal dependencies of temperature and output power after switching the laser on. Based on these results, we were able to optimize the trajectory of nonlinear crystal rotation following the system start-up and reduce the switching-on time from tens of seconds to 50 ms without any negative effect on the output power.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. F. Dausinger, F. Lichtner, H. Lubatschowski, Femtosecond Technology for Technical and Medical Applications (Springer, Berlin, 2004)

    Book  Google Scholar 

  2. M. Braun, P. Gilch, W. Zinth, Ultrashort Laser Pulses in Biology and Medicine (Springer, Berlin, 2008)

    Book  Google Scholar 

  3. P. Liu, W.L. Smith, H. Lotem, J.H. Bechtel, N. Bloembergen, R.S. Adhav, Phys. Rev. B 17(12), 4620 (1978)

    Article  ADS  Google Scholar 

  4. J.N. Chróinín, A. Dragomir, J.G. McInerney, D.N. Nikogosyan, Opt. Commun. 187(1), 185 (2001)

    Article  ADS  Google Scholar 

  5. A. Dragomir, J.G. McInerney, D.N. Nikogosyan, Appl. Opt. 41(21), 4365 (2002)

    Article  ADS  Google Scholar 

  6. S.A. Slattery, D.N. Nikogosyan, Opt. Commun. 228(1), 127 (2003)

    Article  ADS  Google Scholar 

  7. M. Divall, K. Osvay, G. Kurdi, E. Divall, J. Klebniczki, J. Bohus, Á. Péter, K. Polgár, Appl. Phys. B 81(8), 1123 (2005)

    Article  ADS  Google Scholar 

  8. L.I. Isaenko, A. Dragomir, J.G. McInerney, D.N. Nikogosyan, Opt. Commun. 198(4), 433 (2001)

    Article  ADS  Google Scholar 

  9. A. Dubietis, G. Tamošauskas, A. Varanavičius, G. Valiulis, Appl. Opt. 39(15), 2437 (2000)

    Article  ADS  Google Scholar 

  10. S. Wu, G.A. Blake, S. Sun, H. Yu, Proc. SPIE 3928, 221 (2000)

    ADS  Google Scholar 

  11. W. Chen, A. Jiang, G. Wang, J. Cryst. Growth 256(3–4), 383 (2003)

    Article  ADS  Google Scholar 

  12. D. Perlov, S. Livneh, P. Czechowicz, A. Goldgirsh, D. Loiacono, Cryst. Res. Technol. 46(7), 651 (2011)

    Article  Google Scholar 

  13. C. Rothhardt, J. Rothhardt, A. Klenke, T. Peschel, R. Eberhardt, J. Limpert, A. Tünnermann, Opt. Mater. Express 4(5), 1092 (2014)

    Article  Google Scholar 

  14. R.W. Byren, D.S. Sumida: U.S. Patent 6,330,256 (2001)

  15. H. Kouta, Y. Kuwano, Opt. Lett. 24(17), 1230 (1999)

    Article  ADS  Google Scholar 

  16. Y. Yap, K. Deki, N. Kitatochi, Y. Mori, T. Sasaki, Opt. Lett. 23(13), 1016 (1998)

    Article  ADS  Google Scholar 

  17. D.N. Nikogosyan, Nonlinear Optical Crystals: A Complete Survey (Springer, New York, 2005)

    Google Scholar 

  18. I.H. van Stokkum, D.S. Larsen, R. van Grondelle, Biochim. Biophys. Acta 1657(2–3), 82 (2004)

    Article  Google Scholar 

  19. J.C. Lagarias, J.A. Reeds, M.H. Wright, P.E. Wright, SIAM J. Optim. 9(1), 112 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  20. M. Barkauskas, A. Melninkaitis, D. Mikšys, L. Meslinaitė, R. Grigonis, V. Sirutkaitis, H. Bercegol, L. Lamaignère, Proc. SPIE 6403, 64031V (2007)

    ADS  Google Scholar 

  21. M.M. Chirila, N.Y. Garces, L.E. Halliburton, S.G. Demos, T.A. Land, H.B. Radousky, J. Appl. Phys. 94(10), 6456 (2003)

    Article  ADS  Google Scholar 

  22. J.E. Davis, R.S. Hughes, H.W. Lee, Chem. Phys. Lett. 207(4), 540 (1993)

    Article  ADS  Google Scholar 

  23. C.D. Marshall, S.A. Payne, M.A. Henesian, J.A. Speth, H.T. Powell, J. Opt. Soc. Am. B 11(5), 774 (1994)

    Article  ADS  Google Scholar 

Download references

Conflict of interest

E. Gabryte, S. Sobutas, M. Vengris (part-time) and R. Danielius are paid employees of “Light Conversion” Ltd, Vilnius, Lithuania. R. Danielius is a shareholder of “Light Conversion” Ltd, Vilnius, Lithuania.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Egle Gabryte.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gabryte, E., Sobutas, S., Vengris, M. et al. Control of thermal effects in fast-switching femtosecond UV laser system. Appl. Phys. B 120, 31–39 (2015). https://doi.org/10.1007/s00340-015-6090-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-015-6090-4

Keywords

Navigation