Skip to main content
Log in

Examination of the thermal accommodation coefficient used in the sizing of iron nanoparticles by time-resolved laser-induced incandescence

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

While time-resolved laser-induced incandescence (TiRe-LII) shows promise as a diagnostic for sizing aerosolized iron nanoparticles, the spectroscopic and heat transfer models needed to interpret TiRe-LII measurements on iron nanoparticles remain uncertain. This paper focuses on three key aspects of the models: the thermal accommodation coefficient; the spectral absorption efficiency; and the evaporation sub-model. Based on a detailed literature review, spectroscopic and heat transfer models are defined and applied to analyze TiRe-LII measurements carried out on iron nanoparticles formed in water and then aerosolized into monatomic and polyatomic carrier gases. A comparative analysis of the results shows nanoparticle sizes that are consistent between carrier gases and thermal accommodation coefficients that follow the expected trends with bath gas molecular mass and structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. L.A. Melton, Soot diagnostics based on laser heating. Appl. Opt. 23(13), 2201–2208 (1984)

    Article  ADS  Google Scholar 

  2. S. Schraml, S. Will, A. Leipertz, Simultaneous measurement of soot mass concentration and primary particle size in the exhaust of a DI diesel engine by time-resolved laser-induced incandescence (TIRE-LII). SAE Paper, no. 01-0146 (1999)

  3. B.F. Kock, T. Eckhardt, P. Roth, In-cylinder sizing of diesel particles by time-resolved laser-induced incandescence (TR-LII). Proc. Combust. Inst. 29(2), 2775–2782 (2002)

    Article  Google Scholar 

  4. D.R. Snelling, G.J. Smallwood, F. Liu, O.L. Gulder, W.D. Bachalo, A calibration-independent laser-induced incandescence technique for soot measurement by detecting absolute light intensity. Appl. Opt. 44(31), 6773–6785 (2005)

    Article  ADS  Google Scholar 

  5. R.L. Vander Wal, T.M. Ticich, J.R. West, Laser-induced incandescence applied to metal nanostructures. Appl. Opt. 38(27), 5867–5879 (1999)

    Article  ADS  Google Scholar 

  6. A.V. Fillipov, M.W. Markus, P. Roth, In-situ characterization of ultrafine particles by laser-induced incandescence: sizing and particle structure determination. J. Aerosol Sci. 30(1), 71–87 (1999)

    Article  Google Scholar 

  7. R. Starke, B. Kock, P. Roth, Nano-particle sizing by laser-induced incandescence (LII) in a shock wave reactor. Shock Waves 12(5), 260–351 (2003)

    Article  Google Scholar 

  8. B.F. Kock, C. Kayan, J. Knipping, H.R. Orthner, P. Roth, Comparison of LII and TEM sizing during synthesis of iron particle chains. Proc. Combust. Inst. 30(1), 1689–1697 (2005)

    Article  Google Scholar 

  9. A. Eremin, E. Gurentsov, C. Schulz, Influence of the bath gas on the condensation of supersaturated iron atom vapour at room temperature. J. Phys. D Appl. Phys. 41(5), 1–5 (2008)

    Article  Google Scholar 

  10. A. Eremin, E. Gurentsov, E. Popova, K. Priemchenko, Size dependence of complex refractive index function of growing nanoparticles. Appl. Phys. B 104(2), 289–295 (2011)

    Article  ADS  Google Scholar 

  11. A. Eremin, E. Gurentsov, E. Mikheyeva, K. Priemchenko, Experimental study of carbon and iron nanoparticle vaporisation under pulse laser heating. Appl. Phys. B 112(3), 421–432 (2013)

    Article  ADS  Google Scholar 

  12. Y. Murakami, T. Sugatani, Y. Nosaka, Laser-induced incandescence study on the metal aerosol particles as the effect of the surrounding gas medium. J. Phys. Chem. A 109(40), 8994–9000 (2005)

    Article  Google Scholar 

  13. T. Sipkens, G. Joshi, K.J. Daun, Y. Murakami, Sizing of molybdenum nanoparticles using time-resolved laser-induced incandescence. J. Heat Transf. 135(5), 052401 (2013)

    Article  Google Scholar 

  14. J. Reimann, H. Oltmann, S. Will, C. Bassano, E.L. Lösch, S. Günther, Laser Sintering of Nickel Aggregates Produced from Inert Gas Condensation. in Proceedings of the World Conference on Particle Technology, Nuremberg, Germany (2010)

  15. T. Lehre, H. Bockhorn, B. Jungfleisch, R. Suntz, Development of a measuring technique for simultaneous in situ detection of nanoscaled particle size distributions and gas temperatures. Chemosphere 51, 1055–1061 (2003)

    Article  Google Scholar 

  16. S. Maffi, F. Cignoli, C. Bellomunno, S. De luliis, G. Zizak, Spectral effects in laser induced incandescence application to flame-made titania nanoparticles. Spectrochim. Acta B 63(2), 202–209 (2009)

    Article  ADS  Google Scholar 

  17. F. Cignoli, C. Bellomunno, S. Maffi, G. Zizak, Laser-induced incandescence of titania nanoparticles synthesized in a flame. Appl. Phys. B 96(4), 593–599 (2008)

    Article  ADS  Google Scholar 

  18. B. Tribalet, A. Faccinetto, T. Dreier, C. Schultz, Evaluation of particle sizes of iron-oxide nano-particles in a low-pressure flame-synthesis reactor by simultaneous application of TiRe-LII and PMS. in 5th Workshop on Laser-Induced Incandescence, Le Touquet, France (2012)

  19. I.S. Altman, D. Lee, J.D. Chung, J. Song, M. Choi, Light of absorption of silica nanoparticles. Phys. Rev. B 63(16), 161402 (2001)

    Article  ADS  Google Scholar 

  20. T.A. Sipkens, R. Mansmann, K.J. Daun, N. Petermann, J.T. Titantah, M. Karttunen, H. Wiggers, T. Dreier, C. Schulz, In situ particle sizing of silicon nanoparticles by time-resolved laser-induced incandescence. Appl. Phys. B 116(3), 623–636 (2014)

    Article  ADS  Google Scholar 

  21. S. Krishnan, K.J. Yugawa, P.C. Nordine, Optical properties of liquid nickel and iron. Phys. Rev. B 55(13), 8201–8206 (1997)

    Article  ADS  Google Scholar 

  22. J.C. Miller, Optical properties of liquid metals at high temperatures. Philos. Mag. 20(168), 1115–1132 (1969)

    Article  ADS  Google Scholar 

  23. K.M. Shvarev, V.S. Gushchin, B. Baum, The effect of temperature on optical constants of iron. High Temp. 16(3), 441–446 (1978)

    Google Scholar 

  24. K.K. Nanda, F.E. Kruis, H. Fissan, Evaporation of free PbS nanoparticles: evidence of the Kelvin effect. Phys. Rev. Lett. 89(25), 256103 (2002)

    Article  ADS  Google Scholar 

  25. K. Daun, B. Stagg, F. Liu, G. Smallwood, D. Snelling, Determining aerosol particle size distributions using time-resolved laser-induced incandescence. Appl. Phys. B 87(2), 363–372 (2007)

    Article  ADS  Google Scholar 

  26. T.C. Bond, R.W. Bergstrom, Light absorption by carbonaceous particles: an investigative review. Aerosol Sci. Technol. 40, 27–67 (2006)

    Article  Google Scholar 

  27. M.F. Modest, Radiative Heat Transfer, 3rd edn. (Academic Press, San Diego, 2013)

    Google Scholar 

  28. J.A. Creighton, D.G. Eadon, Ultraviolet–Visible absorption spectra of the colloidal metallic elements. J. Chem. Soc., Faraday Trans. 87, 3881–3891 (1991)

    Article  Google Scholar 

  29. M. Quinten, Optical Properties of Nanoparticle Systems: Mie and Beyond (Wiley, New York, 2011)

    Book  Google Scholar 

  30. C.F. Bohren, D.R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983)

    Google Scholar 

  31. M.P. Marder, Condensed Matter Physics, 2nd edn. (Wiley, New York, 2010)

    Book  Google Scholar 

  32. Y. Liu, S.A. Majetich, R.D. Tilton, D.S. Scholl, G.V. Lowry, TCE dechlorination rates, pathways, and efficiency of nanoscale iron particles with different properties. Environ. Sci. Technol. 39(5), 1338–1345 (2005)

    Article  ADS  Google Scholar 

  33. F. He, D. Zhao, Manipulating the size and dispersibility of zerovalent iron nanoparticles by use of carboxyl cellulose stabilizers. Environ. Sci. Technol. 41(17), 6216–6221 (2007)

    Article  ADS  Google Scholar 

  34. M. W. Chase, NIST-JANAF Thermochemical Tables, 4th edn. American Institute of Physics (1998)

  35. H. Kobatake, H. Khosroabadi, H. Fukuyama, Normal spectral emissivity measurement of liquid iron and nickel using electromagnetic levitation in direct current magnetic field. Metall. Mater. Trans. A 43A, 2466–2472 (2012)

    Article  ADS  Google Scholar 

  36. K.J. Daun, T.A. Sipkens, J.T. Titantah, M. Karttunen, Thermal accommodation coefficients for laser-induced incandescence sizing of metal nanoparticles in monatomic gases. Appl. Phys. B 112(3), 409–420 (2013)

  37. F. Liu, K.J. Daun, D.R. Snelling, G.J. Smallwood, Heat conduction from a spherical nanoparticle: status of modeling heat conduction in laser-induced incandescence. Appl. Phys. B 83, 355–382 (2006)

    Article  ADS  Google Scholar 

  38. K.J. Daun, Thermal accommodation coefficients between polyatomic gas molecules and soot in laser-induced incandescence experiments. Int. J. Heat Mass Transf. 52, 5081–5089 (2009)

    Article  MATH  Google Scholar 

  39. K.J. Daun, G.J. Smallwood, F. Liu, Investigation of thermal accommodation coefficients in time-resolved laser-induced incandescence. J. Heat Trans. 130(12), 121201 (2008)

    Article  Google Scholar 

  40. K.J. Daun, G.J. Smallwood, F. Liu, Molecular dynamics simulations of translational thermal accommodation coefficients for time-resolved LII. Appl. Phys. B 94(1), 39–49 (2009)

    Article  ADS  Google Scholar 

  41. K.J. Daun, J.T. Titantah, M. Karttunen, Molecular dynamics simulation of thermal accommodation coefficients for laser-induced incandescence sizing of nickel particles. Appl. Phys. B 107(1), 221–228 (2012)

    Article  ADS  Google Scholar 

  42. K.M. Watson, Thermodynamics of the liquid state. Ind. Eng. Chem. 35(4), 398–406 (1943)

    Article  Google Scholar 

  43. D.A. Young, B.J. Alder, Critical point of metals from the van der Waals model. Phys. Rev. A 3(1), 364–371 (1971)

    Article  ADS  Google Scholar 

  44. D. Lide (ed.), CRC Handbook of Chemistry and Physics, 95th ed., (CRC Press, Boca Raton, 2014–2015)

  45. W. Forsythe, Smithsonian Physical Tables, 9th ed., Knovel (2003)

  46. P.D. Desai, Thermodynamic properties of iron and silicon. J. Phys. Chem. Ref. Data 15(3), 967–983 (1986)

    Article  ADS  Google Scholar 

  47. S.A. Kuhlmann, J. Reimann, S. Will, On heat conduction between laser-heated nanoparticles and a surrounding gas. J. Aerosol Sci. 37(12), 1696–1716 (2006)

    Article  Google Scholar 

  48. B.J. Keene, Review of data for the surface tension of iron and its binary alloys. Int. Mater. Rev. 33(1), 1–37 (1988)

    Article  Google Scholar 

  49. R.C. Tolman, The effect of droplet size on surface tension. J. Chem. Phys. 17(3), 333–337 (1949)

    Article  ADS  Google Scholar 

  50. K. Koga, X.C. Zeng, A.K. Shchekin, Validity of Tolman’s equation: how large should a droplet be? J. Chem. Phys. 109(10), 4063–4070 (1998)

    Article  ADS  Google Scholar 

  51. T. Mohri, T. Horiuchi, H. Uzawa, M. Ibaragi, M. Igarashi, F. Abe, Theoretical investigation of L10-disorder phase equilibria in Fe–Pd alloy system. J. Alloys Compd. 317, 13–18 (2001)

    Article  Google Scholar 

  52. Y.A. Lei, T. Bykov, S. Yoo, X.C. Zeng, The Tolman length: is it positive or negative? J. Am. Chem. Soc. 127(44), 15346–15347 (2005)

    Article  Google Scholar 

  53. H.M. Lu, Q. Jiang, Size-dependent surface tension and Tolman’s length of droplets. Langmuir 21(2), 779–781 (2005)

    Article  Google Scholar 

  54. A.R. Nair, S.P. Sathian, Studies on the effect of curvature on the surface properties of nanodrops. J. Mol. Liq. 195, 248–254 (2014)

    Article  Google Scholar 

  55. J.H. Shin, M.R. Deinert, A model for the latent heat of melting in free standing metal nanoparticles. J. Chem. Phys. 140(16), 164707 (2014)

    Article  ADS  Google Scholar 

  56. A. Alqudami, S. Annapoorni, Fluorescence from metallic silver and iron nanoparticles prepared by exploding wire technique. Plasmonics 2, 5–13 (2007)

    Article  Google Scholar 

  57. R.L. Vander Wal, Laser-induced incandescence: excitation and detection conditions, material transformations and calibration. Appl. Phys. B 96(4), 601–611 (2009)

    Article  ADS  Google Scholar 

  58. T. Phenrat, H.J. Kim, F. Fagerlund, T. Illangasekare, R.D. Tilton, G.V. Lowry, Particle size distribution, concentration, and magnetic attraction affect transport of polymer-modified Fe0 nanoparticles in sand columns. Environ. Sci. Technol. 43(15), 5079–5085 (2009)

    Article  ADS  Google Scholar 

  59. B.M. Crosland, M.R. Johnson, K.A. Thomson, Analysis of uncertainties in instantaneous soot volume fraction measurements using two-dimensional, auto-compensating, laser-induced incandescence (2D-AC-LII). Appl. Phys. B 102, 173–183 (2011)

    Article  ADS  Google Scholar 

  60. J. Kaipio, E. Somersalo, Statistical and Computational Inverse Problems (Springer, Berlin, 2005)

    MATH  Google Scholar 

Download references

Acknowledgments

This research was supported by the National Science and Engineering Research Council of Canada (NSERC), the Canadian Foundation for Innovation-Leaders Opportunity Fund (CFI-LOF), and the Waterloo Institute for Nanotechnology (WIN). Transmission electron microscopy was carried out using the facilities of the Canadian Centre for Electron Microscopy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. J. Daun.

Appendix: Uncertainty analysis through Bayesian estimation

Appendix: Uncertainty analysis through Bayesian estimation

TiRe-LII data are analyzed using Bayesian inference. In this technique, a posterior distribution, P(x|b), of the quantities-of-interest in x conditional on observed data in b is found using Bayes’ equation

$$P\left( {\left. {\mathbf{x}} \right|{\mathbf{b}}} \right) = \frac{{P\left( {\left. {\mathbf{b}} \right|{\mathbf{x}}} \right)P_{\text{pr}} \left( {\mathbf{x}} \right)}}{{P\left( {\mathbf{b}} \right)}}$$
(22)

where P(b|x) is the likelihood of the observed data in b occurring for a hypothetical x, P pr(x) is a probability density that represents the state of knowledge of x prior to the measurement, and P(b) is the evidence

$$P\left( {\mathbf{b}} \right) = \int\limits_{{\mathbf{x}}} {P\left( {\left. {\mathbf{b}} \right|{\mathbf{x}}} \right)P_{\text{pr}} \left( {\mathbf{x}} \right){\text{d}}{\mathbf{x}}}$$
(23)

which scales P(x|b) so that the Law of Total Probability is satisfied. In this study, the quantities-of-interest are the nanoparticle size and the TAC, x = [d p, α]T, while b contains the expected values of the effective temperatures at various cooling times (i.e., the average of the effective temperatures obtained from individual shots, after outliers have been removed.) In contrast to Ref. [20], in which the effective temperatures in b are assumed to be independent, considerable covariance was observed in b, which likely arises from signal processing algorithms. We account for this by defining the variance–covariance matrix Γe, again based on the effective temperatures obtained from individual shots, and then defining the likelihood as

$$P\left({\mathbf{b}}|{\mathbf{x}} \right)\propto\exp \left\{\|({\mathbf{b}}^{\rm mod } - {\mathbf{b}}^{\rm exp}) \varGamma_{\rm b}^{-1}({\mathbf{b}}^{\rm mod} -{\mathbf{b}}^{\rm exp})\|_{2}^{2}\right\}$$
(24)

Uncertainties in the quantities-of-interest caused by uncertainties in the other “nuisance” model parameters, in this case Φ = [ρ, c p, T g, E(m)r, P g, T cr, ΔH v,b]T, are incorporated into the analysis by treating them as additional stochastic variables to be inferred, so Bayes’ equation becomes

$$P\left( {{\mathbf{x}},{\varvec{\Phi}}|{\mathbf{b}}} \right) = \frac{{P\left( {{\mathbf{b}}|{\mathbf{x}},{\varvec{\Phi}}} \right)P_{\text{pr}} \left( {\mathbf{x}} \right)P_{\text{pr}} \left( {\varvec{\Phi}} \right)}}{{P\left( {\mathbf{b}} \right)}}$$
(25)

While an uninformative prior is used for x (i.e., P pr(x) = 1), the analysis must incorporate prior probabilities that reflect the state of knowledge of the other model parameters, similar to the procedure followed by Crosland et al. [59]. In this work, the parameters in Φ are assumed to be normally distributed about their nominal values with a standard distribution of 10 %, which reflects the epistemic uncertainty associated with these parameters; for example, the range of values for E(m)r corresponding to the various ellipsometry measurements on molten iron summarized in Table 2 are within ±10 % of the Drude theory prediction.

Finally, the nuisance parameters are “marginalized out” of the posterior density by integration,

$$P\left( {{\mathbf{x}}|{\mathbf{b}}} \right) = \int\limits_{{\varvec{\Phi}}} {P\left( {{\mathbf{x}},{\varvec{\Phi}}|{\mathbf{b}}} \right)\;} {\text{d}}{\varvec{\Phi}}$$
(26)

Instead of carrying out the integrations in Eqs. (23) and (26) explicitly, however, the marginalized posterior distribution P(x|b) is estimated using a Markov chain Monte Carlo (MCMC) procedure [60]. Nuisance parameters, Φ, are sampled directly from their prior distributions so as to keep the samples centered about their expected values. Error bounds correspond to one standard deviation of 75,000 MCMC samples.

Figure 12 shows a histogram estimating the density of MCMC samples for the Fe–CO data when considering conduction only cooling. Regions with a higher number of samples correspond to values of Fe–CO that are more likely. These values do not necessarily correspond to values where the posterior is maximum as there are multiple other dimensions that have been marginalized in producing this plot. The spread of the samples gives an indication of the uncertainty in the inferred parameter.

Fig. 12
figure 12

Estimated posterior density for the Fe–CO data showing the density as a function of α/dp during conduction only modeling. The regions of higher density correspond to values of α/dp that are more likely

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sipkens, T.A., Singh, N.R., Daun, K.J. et al. Examination of the thermal accommodation coefficient used in the sizing of iron nanoparticles by time-resolved laser-induced incandescence. Appl. Phys. B 119, 561–575 (2015). https://doi.org/10.1007/s00340-015-6022-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-015-6022-3

Keywords

Navigation