Skip to main content
Log in

An experimental study of noise in mid-infrared quantum cascade lasers of different designs

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

We present an experimental study of noise in mid-infrared quantum cascade lasers (QCLs) of different designs. By quantifying the high degree of correlation occurring between fluctuations of the optical frequency and voltage between the QCL terminals, we show that electrical noise is a powerful and simple mean to study noise in QCLs. Based on this outcome, we investigated the electrical noise in a large set of 22 QCLs emitting in the range of 7.6–8 μm and consisting of both ridge-waveguide and buried-heterostructure (BH) lasers with different geometrical designs and operation parameters. From a statistical data processing based on an analysis of variance, we assessed that ridge-waveguide lasers have a lower noise than BH lasers. Our physical interpretation is that additional current leakages or spare injection channels occur at the interface between the active region and the lateral insulator in the BH geometry, which induces some extra noise. In addition, Schottky-type contacts occurring at the interface between the n-doped regions and the lateral insulator, i.e., iron-doped InP, are also believed to be a potential source of additional noise in some BH lasers, as observed from the slight reduction in the integrated voltage noise observed at the laser threshold in several BH-QCLs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. J. Faist, F. Capasso, D.L. Sivco, C. Sirtori, A.L. Hutchinson, A.Y. Cho, Quantum cascade lasers. Science 264, 553–556 (1994)

    Article  ADS  Google Scholar 

  2. A. Gambetta, D. Gatti, A. Castrillo, N. Coluccelli, G. Galzerano, P. Laporta, L. Gianfrani, M. Marangoni, Comb-assisted spectroscopy of CO2 absorption profiles in the near- and mid-infrared regions. Appl. Phys. B 109(3), 385–390 (2012)

    Article  ADS  Google Scholar 

  3. S. Borri, I. Galli, F. Cappelli, A. Bismuto, S. Bartalini, P. Cancio, G. Giusfredi, D. Mazzotti, J. Faistd, P. De Natale, Direct link of a mid-infrared QCL to a frequency comb by optical injection. Opt. Lett. 37, 1011–1013 (2012)

    Article  ADS  Google Scholar 

  4. A.A. Mills, D. Gatti, J. Jiang, C. Mohr, W. Mefford, L. Gianfrani, M. Fermann, I. Hartl, M. Marangoni, Coherent phase lock of a 9 μm quantum cascade laser to a 2 μm thulium optical frequency comb. Opt. Lett. 37, 4083–4085 (2012)

    Article  ADS  Google Scholar 

  5. A. Gambetta, D. Gatti, A. Castrillo, G. Galzerano, P. Laporta, L. Gianfrani, M. Marangoni, Mid-infrared quantitative spectroscopy by comb-referencing of a quantum-cascade-laser: application to the CO2 spectrum at 4.3 μm. Appl. Phys. Lett. 99(25), 251107 (2011)

    Article  ADS  Google Scholar 

  6. P.L.T. Sow, S. Mejri, S.K. Tokunaga, O. Lopez, A. Goncharov, B. Argence, C. Chardonnet, A. Amy-Klein, C. Daussy, B. Darqui, A widely tunable 10 μm quantum cascade laser phase-locked to a state-of-the-art mid-infrared reference for precision molecular spectroscopy. Appl. Phys. Lett. 104, 264101 (2014)

    Article  ADS  Google Scholar 

  7. S. Bartalini, S. Borri, P. Cancio, A. Castrillo, I. Galli, G. Giusfredi, D. Mazzotti, L. Gianfrani, P. De Natale, Observing the intrinsic linewidth of a quantum-cascade laser: beyond the Schawlow–Townes limit. Phys. Rev. Lett. 104, 083904 (2010)

    Article  ADS  Google Scholar 

  8. T. Aellen, R. Maulini, R. Terazzi, N. Hoyler, M. Giovaninni, S. Blaser, L. Hvozdara, J. Faist, Direct measurement of the linewidth enhancement factor by optical heterodyning of an amplitude-modulated quantum cascade laser. Appl. Phys. Lett. 89, 091121 (2006)

    Article  ADS  Google Scholar 

  9. T.L. Myers, R.M. Williams, M.S. Taubman, C. Gmachl, F. Capasso, D.L. Sivco, J.N. Baillargeon, A.Y. Cho, Free-running frequency stability of mid-infrared quantum cascade lasers. Opt. Lett. 27(3), 170–172 (2002)

    Article  ADS  Google Scholar 

  10. L. Tombez, J. Di Francesco, S. Schilt, G. Di Domenico, J. Faist, P. Thomann, D. Hofstetter, Frequency noise of free-running 4.6 µm DFB quantum cascade lasers near room temperature. Opt. Lett. 36(16), 3109–3111 (2011)

    Article  ADS  Google Scholar 

  11. S. Bartalini, S. Borri, I. Galli, G. Giusfredi, D. Mazzotti, T. Edamura, N. Akikusa, M. Yamanishi, P. De Natale, Measuring frequency noise and intrinsic linewidth of a room-temperature DFB quantum cascade laser. Opt. Express 19(19), 17996–18003 (2011)

    Article  ADS  Google Scholar 

  12. L. Tombez, S. Schilt, J. Di Francesco, P. Thomann, D. Hofstetter, Temperature dependence of the frequency noise in a mid-IR DFB quantum cascade laser from cryogenic to room temperature. Opt. Express 20(7), 6851–6859 (2012)

    Article  ADS  Google Scholar 

  13. M. Yamanishi, T. Hirohata, S. Hayashi, K. Fujita, K. Tanaka, Electrical flicker-noise generated by filling and emptying of impurity states in injectors of quantum cascade lasers. J. Appl. Phys. 116, 183106 (2014)

    Article  Google Scholar 

  14. S. Borri, S. Bartalini, P.C. Pastor, I. Galli, G. Giusfredi, D. Mazzotti, M. Yamanishi, P. De Natale, Frequency-noise dynamics of mid-infrared quantum cascade lasers. IEEE J. Quantum Electron 47, 984–988 (2011)

    Article  ADS  Google Scholar 

  15. L. Tombez, S. Schilt, D. Hofstetter, T. Südmeyer, Active linewidth-narrowing of a mid-IR quantum cascade laser without optical reference. Opt. Lett. 38(23), 5079–5082 (2013)

    Article  ADS  Google Scholar 

  16. K. Knabe, P.A. Williams, F.R. Giorgetta, C.M. Armacost, S. Crivello, M.B. Radunsky, N.R. Newbury, Frequency characterization of a swept- and fixed-wavelength external-cavity quantum cascade laser by use of a frequency comb. Opt. Express 20, 12432–12442 (2012)

    Article  Google Scholar 

  17. R.M. Williams, J.F. Kelly, J.S. Hartman, S.W. Sharpe, M.S. Taubman, J.L. Hall, F. Capasso, C. Gmachl, D.L. Sivco, J.N. Baillargeon, A.Y. Cho, Kilohertz linewidth from frequency-stabilized mid-infrared quantum cascade lasers. Opt. Lett. 24, 1844–1846 (1999)

    Article  ADS  Google Scholar 

  18. F. Cappelli, I. Galli, S. Borri, G. Giusfredi, P. Cancio, D. Mazzotti, A. Montori, N. Akikusa, M. Yamanishi, S. Bartalini, P. De Natale, Subkilohertz linewidth room-temperature mid-infrared quantum cascade laser using a molecular sub-Doppler reference. Opt. Lett. 37, 4811–4813 (2012)

    Article  ADS  Google Scholar 

  19. M.S. Taubman, T.L. Myers, B.D. Cannon, R.M. Williams, F. Capasso, C. Gmachl, D.L. Sivco, A.Y. Cho, Frequency stabilization of quantum-cascade lasers by use of optical cavities. Opt. Lett. 27, 2164–2166 (2002)

    Article  ADS  Google Scholar 

  20. E. Fasci, N. Coluccelli, M. Cassinerio, A. Gambetta, L. Hilico, L. Gianfrani, P. Laporta, A. Castrillo, G. Galzerano, Narrow-linewidth quantum cascade laser at 8.6 μm. Opt. Lett. 39(16), 4946–4949 (2014)

    Article  ADS  Google Scholar 

  21. I. Sargachev, R. Maulini, A. Bismuto, S. Blaser, T. Gresch, Y. Bidaux, A. Müller, S. Schilt, T. Südmeyer, All-electrical frequency noise reduction and linewidth narrowing in quantum cascade lasers. Opt. Lett. 39(22), 6411–6414 (2014)

    Article  ADS  Google Scholar 

  22. A.L. McWorther, “1/f noise and germanium surface properties”, in Semiconductor Surface Physics, ed. by R.H. Kingston (University of Pennsylvania, Philadelphia, 1957), pp. 207–228

  23. F.N. Hooge, 1/f noise is no surface effect. Phys. Lett. A 29, 139–140 (1969)

    Article  ADS  Google Scholar 

  24. J. Faist, D. Hofstetter, M. Beck, T. Aellen, M. Rochat, S. Blaser, Bound-to-continuum and two-phonon resonance, quantum-cascade lasers for high duty cycle, high-temperature operation. Quantum Electron Lett. 38, 533–546 (2002)

    Article  ADS  Google Scholar 

  25. L. Tombez, S. Schilt, J. Di Francesco, T. Führer, B. Rein, T. Walther, G. Di Domenico, D. Hofstetter, P. Thomann, Linewidth of a quantum cascade laser assessed from its frequency noise spectrum and impact of the current driver. Appl. Phys. B 109(3), 407–414 (2012)

    Article  ADS  Google Scholar 

  26. E. Rubiola, F. Vernotte, The cross-spectrum experimental method http://arxiv.org/abs/1003.0113

  27. T. Aellen, S. Blaser, M. Beck, D. Hofstetter, J. Faist, E. Gini, Continuous-wave distributed-feedback quantum-cascade lasers on a Peltier cooler. Appl. Phys. Lett. 83, 1929 (2003)

    Article  ADS  Google Scholar 

  28. L. Tombez, S. Schilt, G. Di Domenico, S. Blaser, A. Muller, T. Gresch, B. Hinkov, M. Beck, J. Faist, D. Hofstetter, Physical Origin of Frequency Noise and Linewidth in Mid-IR DFB Quantum Cascade Lasers. CLEO. San Jose, USA; June 9–14, 2013, oral #CM1 K.3

  29. L. Tombez, F. Cappelli, S. Schilt, G. Di Domenico, S. Bartalini, D. Hofstetter, Wavelength tuning and thermal dynamics of continuous-wave mid-IR distributed feedback quantum cascade laser. Appl. Phys. Lett. 103(3), 031111–031115 (2013)

    Article  ADS  Google Scholar 

  30. http://www.r-project.org/

  31. H.H. Güttler, J.H. Werner, Influence of barrier inhomogeneities on noise at Schottky contacts. Appl. Phys. Lett. 56, 1113 (1990)

    Article  ADS  Google Scholar 

  32. G. Letal, S. Smetona, R. Mallard, J. Matukas, V. Palenskis, S. Pralgauskaite, Reliability and low-frequency noise measurements of InGaAsP multiple quantum well buried-heterostructure lasers. J. Vac. Sci. Technol. A 20(3), 1061–1066 (2002)

    Article  ADS  Google Scholar 

  33. W.H. Richardon, Y. Yamamoto, Quantum correlation between the junction-voltage fluctuation and the photon-number fluctuation in a semiconductor laser. Phys. Rev. Lett. 66(15), 1963–1966 (1991)

    Article  ADS  Google Scholar 

  34. R.E. Bartolo, C.K. Kirkendall, V. Kupershmidt, S. Siala, Achieving narrow linewidth, low phase noise external cavity semiconductor lasers through the reduction of 1/f noise, Proceedings SPIE 6133, Novel In-Plane Semiconductor Lasers V, 61330I (22 Feb 2006)

  35. R. Hakimi, M.-C. Amman, Reduction of 1/f carrier noise in InGaAsP-InP heterostructures by sulphur passivation of facets. Semicond. Sci. Technol. 12, 778–780 (1997)

    Article  ADS  Google Scholar 

  36. Y. Dai, J. Shi, X. Zhang, J. Shi, E. Jin, A study of optical noise measurements as a reliability estimation for laser diodes. Microelectron. Reliab. 35(4), 731–734 (1995)

    Article  Google Scholar 

  37. A. Dandridge, H.F. Taylor, Correlation of low-frequency intensity and frequency fluctuations in GaAlAs lasers. IEEE J. Quantum Electron. 18(10), 1738–1750 (1982)

    Article  ADS  Google Scholar 

  38. I.A. Garmash. V.N. Morozov, A.T. Semenov, M.A. Sumarokov, V.R. Shidlovskii, Leakage currents and 1/f noise in buried InGaAsP-InP heterostructure lasers. J. Quantum Electron. 20 (8), (1990)

  39. A. Dandridge, H.F. Taylor, Noise and correlation effects in GaAlAs broad-band sources. J. Lightwave Technol. 5(5), 689–693 (1987)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work was financed by the Swiss Space Office (SSO) in the frame of the MdP (Positioning measures) program. The authors from University of Neuchatel are also grateful to the Swiss National Science Foundation for additional financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stéphane Schilt.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schilt, S., Tombez, L., Tardy, C. et al. An experimental study of noise in mid-infrared quantum cascade lasers of different designs. Appl. Phys. B 119, 189–201 (2015). https://doi.org/10.1007/s00340-015-6021-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-015-6021-4

Keywords

Navigation