Skip to main content
Log in

Quantum cascade laser-based MIR spectrometer for the determination of CO and \(\hbox {CO}_2\) concentrations and temperature in flames

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

An experimental setup for the simultaneous detection of CO and \(\hbox {CO}_2\) and the temperature in low-pressure flames using a pulsed quantum cascade laser at 4.48 μm is presented. This comparatively new type of laser offers good output energies and beam quality in the mid-infrared, where the strong fundamental transitions of many molecules of interest can be accessed. A single-pass absorption setup was sufficient to obtain good accuracy for the stable species investigated here. Due to the high repetition rate of the laser and the speed of the data acquisition, measurement of two-dimensional absorption spectra and subsequent tomographic reconstruction was feasible. As demonstration of this technique, two-dimensional CO and \(\hbox {CO}_2\) concentrations have been measured in two fuel-rich methane flames with different coflow gases (nitrogen and air). The influence of the coflow gas on the flame center concentration profiles was investigated and compared with one-dimensional model simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. M. Aldén, S. Wallin, W. Wendt, Appl. Phys. B 33, 205–208 (1984)

    Article  ADS  Google Scholar 

  2. R.K. Hanson, P.A. Kuntz, C.H. Kruger, Appl. Opt. 16(8), 2045–2048 (1977)

    Article  ADS  Google Scholar 

  3. R.K. Hanson, Proc. Combust. Inst. 33, 1–40 (2011)

    Article  Google Scholar 

  4. J. Wang, M. Maiorov, D.S. Baer, D.Z. Garbuzov, J.C. Connolly, R.K. Hanson, Appl. Opt. 39(30), 5579–5589 (2000)

    Article  ADS  Google Scholar 

  5. S. Wagner, M. Klein, T. Kathrotia, U. Riedel, T. Kissel, A. Dreizler, V. Ebert, Appl. Phys. B 109, 533–540 (2012)

    Article  ADS  Google Scholar 

  6. K.L. McNesby, R.G. Daniel, J.B. Morris, A.W. Miziolek, Appl. Opt. 34(18), 3318–3324 (1995)

    Article  ADS  Google Scholar 

  7. L. Wondraczek, A. Khorsandi, U. Willer, G. Heide, W. Schade, G.H. Frischat, Flame. Combust 138(1–2), 30–39 (2004)

    Article  Google Scholar 

  8. R.F. Kazarinov, R.A. Suris, Sov. Phys. Semicond. 5, 707–709 (1971)

    Google Scholar 

  9. J. Faist, F. Capasso, D.L. Sivco, C. Sirtori, A.L. Hutchinson, A.Y. Cho, Science 264(5158), 553–556 (1994)

    Article  ADS  Google Scholar 

  10. G. Duxbury, D. Wilson, K. Hay, N. Langford, J. Phys. Chem. A 117, 9738–9745 (2013)

    Article  Google Scholar 

  11. A. Cheesman, J.A. Smith, M.N.R. Ashfold, N. Langford, S. Wright, G. Duxbury, J. Phys. Chem. A 110, 2821–2828 (2006)

    Article  Google Scholar 

  12. S.D. Wehe, M.G. Allen, X. Liu, J. Jeffries, R. Hanson, NO and CO Absorption Measurements with a Mid-IR Quantum Cascade Laser for Engine Exhaust Applications, in paper AIAA 2003–0588 at 41st Aerospace Sciences Meeting (Reno, NV, Jan. 2003)

  13. X. Chao, J.B. Jeffries, R.K. Hanson, Proc. Combust. Inst. 34, 3583–3592 (2012)

    Article  Google Scholar 

  14. J. Vanderover, M.A. Oehlschlaeger, Appl. Phys. B 99(1–2), 353–362 (2010)

    Article  ADS  Google Scholar 

  15. J. Vanderover, W. Wang, M.A. Oehlschlaeger, Appl. Phys. B 103(4), 959–966 (2011)

    Article  ADS  Google Scholar 

  16. W. Ren, A. Farooq, D. Davidson, R. Hanson, Appl. Phys. B 107, 849–860 (2012)

    Article  ADS  Google Scholar 

  17. P. Nau, J. Koppmann, A. Lackner, A. Brockhinke, Detection of formaldehyde in flames using UV and MIR absorption spectroscopy, accepted for publication in Z. Phys. Chem. (2014). doi:10.1515/zpch-2014-0563

  18. E. Normand, M. McCulloch, G. Duxbury, N. Langford, Opt. Lett. 28, 16–18 (2003)

    Article  ADS  Google Scholar 

  19. M.T. McCulloch, E.L. Normand, N. Langford, G. Duxbury, D.A. Newnham, J. Opt. Soc. Am. B 20, 1761–1768 (2003)

    Article  ADS  Google Scholar 

  20. T. Beyer, M. Braun, S. Hartwig, A. Lambrecht, J. Appl. Phys. 95, 4551–4554 (2004)

    Article  ADS  Google Scholar 

  21. L.S. Rothman, I.E. Gordon, R.J. Barber, H. Dothe, R.R. Gamache, A. Goldman, V. Perevalov, S.A. Tashkun, J. Tennyson, J. Quant. Spectrosc. and Rad. Transfer 111, 2139–2150 (2010)

    Article  ADS  Google Scholar 

  22. HITRAN, http://www.cfa.harvard.edu/HITRAN/ (2012)

  23. C.J. Dasch, Appl. Opt. 31(8), 1146–1152 (1992)

    Article  ADS  Google Scholar 

  24. R. Villarreal, P. Varghese, Appl. Opt. 44(31), 6786–6795 (2005)

    Article  ADS  Google Scholar 

  25. J. Humlicek, J. Quant. Spectrosc. Radiat. Transfer 27(4), 437–444 (1982)

    Article  ADS  Google Scholar 

  26. G.P. Smith, D.M. Golden, M. Frenklach, N.W. Moriarty, B. Eiteneer, M. Goldenberg, C.T. Bowman, R.K. Hanson, S. Song, J. William C. Gardiner, V.V. Lissianski, Z. Qin, GRI-Mech 3.0, http://www.me.berkeley.edu/gri_mech (2000)

Download references

Acknowledgments

This research was funded in part by DFG in SFB 686 (TP B3 and TP C5). Help of Raimund Noske with the absorption cell measurements is greatly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Brockhinke.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nau, P., Koppmann, J., Lackner, A. et al. Quantum cascade laser-based MIR spectrometer for the determination of CO and \(\hbox {CO}_2\) concentrations and temperature in flames. Appl. Phys. B 118, 361–368 (2015). https://doi.org/10.1007/s00340-014-5992-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-014-5992-x

Keywords

Navigation