Skip to main content
Log in

Lasing behavior modulation in a layered cylindrical microcavity

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

Optically pumped lasing behaviors modulation was realized in a layered cylindrical microcavity dye laser formed by rhodamine 6G-doped quinoline in a capillary. By inserting an optical fiber into the cylindrical microcavity, whispering gallery modes were successfully suppressed and a new kind of waveguide mode lasing was obtained. The lasing characteristics and resonance mechanism of the two configurations were systematically discussed in both experiment and theoretical calculation. Moreover, the time domain and frequency domain finite element methods were performed and found that with the adjustment of the central fiber, the transition of resonant mode from WGMs to waveguide modes can be achieved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. H.M. Gibbs, G. Khitrova, S.W. Koch, Exciton-polariton light-semiconductor coupling effects. Nat. Photonics 5, 275–282 (2011)

    Article  ADS  Google Scholar 

  2. K.J. Vahala, Optical microcavities. Nature 424, 839–846 (2003)

    Article  ADS  Google Scholar 

  3. P. Rabiei, W.H. Steier, C. Zhang, L.R. Dalton, Polymer micro-ring filters and modulators. J. Lightwave Technol. 20, 1968–1975 (2002)

    Article  ADS  Google Scholar 

  4. J. Ward, O. Benson, WGM microresonators: sensing, lasing and fundamental optics with microspheres. Laser Photonics Rev. 5, 553–570 (2011)

    Article  Google Scholar 

  5. M.A. Santiago-Cordoba, S.V. Boriskina, F. Vollmer, M.C. Demirel, Nanoparticle-based protein detection by optical shift of a resonant microcavity. Appl. Phys. Lett. 99, 073701 (2011)

    Article  ADS  Google Scholar 

  6. J.P. Reithmaier, G. Sek, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L.V. Keldysh, V.D. Kulakovskii, T.L. Reinecke, A. Forchel, Strong coupling in a single quantum dot-semiconductor microcavity system. Nature 432, 197–200 (2004)

    Article  ADS  Google Scholar 

  7. G. Aubry, Q. Kou, J. Soto-Velasco, C. Wang, S. Meance, J.J. He, A.M. Haghiri-Gosnet, A multicolor microfluidic droplet dye laser with single mode emission. Appl. Phys. Lett. 98, 111111 (2011)

    Article  ADS  Google Scholar 

  8. R. Chen, Q.-L. Ye, T. He, V.D. Ta, Y. Ying, Y.Y. Tay, T. Wu, H. Sun, Exciton localization and optical properties improvement in nanocrystal-embedded ZnO core-shell nanowires. Nano Lett. 13, 734–739 (2013)

    Article  ADS  Google Scholar 

  9. R.-M. Ma, R.F. Oulton, V.J. Sorger, G. Bartal, X. Zhang, Room-temperature sub-diffraction-limited plasmon laser by total internal reflection. Nat. Mater. 10, 110–113 (2011)

    Article  ADS  Google Scholar 

  10. F. Todescato, I. Fortunati, S. Gardin, E. Garbin, E. Collini, R. Bozio, J.J. Jasieniak, G.D. Giustina, G. Brusatin, S. Toffanin, R. Signorini, Soft-lithographed up-converted distributed feedback visible lasers based on CdSe–CdZnS–ZnS quantum dots. Adv. Funct. Mater. 22, 337–344 (2012)

    Article  Google Scholar 

  11. J. Dai, C.X. Xu, K. Zheng, C.G. Lv, Y.P. Cui, Whispering gallery-mode lasing in ZnO microrods at room temperature. Appl. Phys. Lett. 95, 241110 (2009)

    Article  ADS  Google Scholar 

  12. V.D. Ta, R. Chen, L. Ma, Y.J. Ying, H.D. Sun, Whispering gallery mode microlasers and refractive index sensing based on single polymer fiber. Laser Photonics Rev. 7, 133–139 (2013)

    Article  Google Scholar 

  13. J. Schäfer, J.P. Mondia, R. Sharma, Z.H. Lu, A.S. Susha, A.L. Rogach, L.J. Wang, Quantum dot microdrop laser. Nano Lett. 8, 1709–1712 (2008)

    Article  ADS  Google Scholar 

  14. V.D. Ta, R. Chen, H.D. Sun, Tuning whispering gallery mode lasing from self-assembled polymer droplets. Sci. Rep. 3, 1362 (2013)

    Article  ADS  Google Scholar 

  15. S.I. Shopova, H. Zhou, X. Fan, P. Zhang, Optofluidic ring resonator based dye laser. Appl. Phys. Lett. 90, 221101 (2007)

    Article  ADS  Google Scholar 

  16. S.V. Frolov, M. Shkunov, Z.V. Vardeny, Ring microlasers from conducting polymers. Phys. Rev. B. 56, 4363–4366 (1997)

    Article  ADS  Google Scholar 

  17. T. Kobayashi, N. Byrne, Plastic evanescent microlaser. Appl. Phys. Lett. 99, 153307 (2011)

    Article  ADS  Google Scholar 

  18. H.-J. Moon, Y.-T. Chough, K. An, Cylindrical microcavity laser based on the evanescent-wave-coupled gain. Phys. Rev. Lett. 85, 3161–3164 (2000)

    Article  ADS  Google Scholar 

  19. I.M. White, H. Oveys, X. Fan, Liquid-core optical ring-resonator sensors. Opt. Lett. 31, 1319–1321 (2006)

    Article  ADS  Google Scholar 

  20. M. Saito, H. Shimatani, H. Naruhashi, Tunable whispering gallery mode emission from a microdroplet in elastomer. Opt. Express 16, 11915–11919 (2008)

    Article  ADS  Google Scholar 

  21. R. Chen, V.D. Ta, H. Sun, Bending-induced bidirectional tuning of whispering gallery mode lasing from flexible polymer fibers. ACS Photonics 1, 11–16 (2014)

    Article  Google Scholar 

  22. V.D. Ta, R. Chen, H. Sun, Coupled polymer microfiber lasers for single mode operation and enhanced refractive index sensing. Adv. Optical Mater. 2, 220–225 (2014)

    Article  Google Scholar 

  23. L. Shang, L. Liu, L. Xu, Single-frequency coupled asymmetric microcavity laser. Opt. Lett. 33, 1150–1152 (2008)

    Article  ADS  Google Scholar 

  24. X. Tu, X. Wu, M. Li, L. Liu, L. Xu, Ultraviolet single-frequency coupled optofluidic ring resonator dye laser. Opt. Express 20, 19996–20001 (2012)

    Article  ADS  Google Scholar 

  25. X. Wu, Y. Sun, J.D. Suter, X. Fan, Single mode coupled optofluidic ring resonator dye lasers. Appl. Phys. Lett. 94, 241109 (2009)

    Article  ADS  Google Scholar 

  26. S.K.Y. Tang, R. Derda, Q. Quan, M. Loncar, G.M. Whitesides, Continuously tunable microdroplet-laser in a microfluidic channel. Opt. Express 19, 2204–2215 (2011)

    Article  Google Scholar 

  27. H.-J. Moon, Y.-T. Chough, J.B. Kim, K. An, J. Yi, J. Lee, Cavity-Q-driven spectral shift in a cylindrical whispering-gallery-mode microcavity laser. Appl. Phys. Lett. 76, 3679 (2000)

    Article  ADS  Google Scholar 

  28. J. Haase, S. Shinohara, P. Mundra, G. Risse, V.G. Lyssenko, H. Fröb, M. Hentschel, A. Eychmuller, K. Leo, Hemispherical resonators with embedded nanocrystal quantum-rod emitters. Appl. Phys. Lett. 97, 211101 (2010)

    Article  ADS  Google Scholar 

  29. J.C. Knight, H.S.T. Driver, G.N. Robertson, Interference modulation of Q values in a cladded-fiber whispering-gallery-mode laser. Opt. Lett. 18, 1296–1298 (1993)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work was supported by ‘‘973’’ Program (2011CB302004), NSFC (61275054), NSFC (11104119) and MOE (20110092130006).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chunxiang Xu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, P., Xu, C., Jiang, M. et al. Lasing behavior modulation in a layered cylindrical microcavity. Appl. Phys. B 118, 93–100 (2015). https://doi.org/10.1007/s00340-014-5958-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-014-5958-z

Keywords

Navigation