Skip to main content
Log in

High-accuracy coherent optical frequency transfer over a doubled 642-km fiber link

  • Published:
Applied Physics B Aims and scope Submit manuscript

An Erratum to this article was published on 07 December 2014

Abstract

To significantly improve the frequency references used in radio-astronomy and the precision measurements in atomic physics, we provide frequency dissemination through a 642-km coherent optical fiber link. On the frequency transfer, we obtained a frequency instability of \(3\times 10^{-19}\) at 1,000 s in terms of Allan deviation on a 5-mHz measurement bandwidth, and an accuracy of \(5\times 10^{-19}\). The ultimate link performance has been evaluated by doubling the link to 1,284 km, demonstrating a new characterization technique based on the double round trip on a single fiber. This method is an alternative to previously demonstrated techniques for link characterization. In particular, the use of a single fiber may be beneficial to long hauls realizations in view of a continental fiber network for frequency and time metrology, as it avoids the doubling of the amplifiers, with a subsequent reduction in costs and maintenance. A detailed analysis of the results is presented, regarding the phase noise, the cycle-slips detection and removal and the instability evaluation. The observed noise power spectrum is seldom found in the literature; hence, the expression of the Allan deviation is theoretically derived and the results confirm the expectations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. L.-S. Ma, P. Jungner, J. Ye, J.L. Hall, Opt. Lett. 19, 1777 (1994)

    Article  ADS  Google Scholar 

  2. K. Predehl, G. Grosche, S.M.F. Raupach, S. Droste, O. Terra, J. Alnis, T. Legero, T.W. Hänsch, Th Udem, R. Holzwarth, H. Schnatz, Science 336, 441 (2012)

    Article  ADS  Google Scholar 

  3. O. Lopez, A. Haboucha, B. Chanteau, C. Chardonnet, A. Amy-Klein, G. Santarelli, Opt. Express 20, 23518 (2012)

    Article  ADS  Google Scholar 

  4. S. Droste, F. Ozimek, Th Udem, K. Predehl, T.W. Hansch, H. Schnatz, G. Grosche, R. Holzwarth, Phys. Rev. Lett. 111, 110801 (2013)

    Article  ADS  Google Scholar 

  5. O. Lopez, A. Kanj, P. Pottie, D. Rovera, J. Achkar, C. Chardonnet, A. Amy-Klein, G. Santarelli, Appl. Phys. B 110, 3 (2013)

    Article  ADS  Google Scholar 

  6. L. Sliwczyski, P. Krehlik, A. Czubla, L. Buczek, M. Lipiski, Metrologia 50, 133 (2013)

    Article  ADS  Google Scholar 

  7. B. Wang, C. Gao, W.L. Chen, J. Miao, X. Zhu, Y. Bai, J.W. Zhang, Y.Y. Feng, T.C. Li, L.J. Wang, Sci. Rep. 2, 556 (2012)

    ADS  Google Scholar 

  8. G. Marra, R. Slavik, H.S. Margolis, S.N. Lea, P. Petropoulos, D.J. Richardson, P. Gill, Opt. Lett. 36, 511 (2011)

    Article  ADS  Google Scholar 

  9. M. Fujieda, M. Kumagai, S. Nagano, A. Yamaguchi, H. Hachisu, T. Ido, Opt. Express 19, 16498 (2011)

    Article  ADS  Google Scholar 

  10. S.-C. Ebenhag, P.O. Hedekvist, P. Jarlemark, R. Emardson, K. Jaldehag, C. Rieck, P. Löthberg, IEEE Trans. Instrum. Meas. 59, 1918 (2010)

    Article  Google Scholar 

  11. F.-L. Hong, M. Musha, M. Takamoto, H. Inaba, S. Yanagimachi, A. Takamizawa, K. Watabe, T. Ikegami, M. Imae, Y. Fujii, M. Amemiya, K. Nakagawa, K. Ueda, H. Katori, Opt. Lett. 34, 692 (2009)

    Article  ADS  Google Scholar 

  12. J. Vojtech, V. Smotlacha, P. Skoda, A. Kuna, M. Hula, S. Sima, in Proceedings of the SPIE 8516. Remote Sensing System Engineering IV, San Diego, CA, 2012, p. 85160H

  13. P.A. Williams, W.C. Swann, N.R. Newbury, J. Opt. Soc. Am. B 25, 1284 (2008)

    Article  ADS  Google Scholar 

  14. A. Bauch, J. Achkar, S. Bize, D. Calonico, R. Dach, R. Hlavac, L. Lorini, T. Parker, G. Petit, D. Piester, K. Szymaniec, P. Uhrich, Metrologia 43, 109 (2006)

    Article  ADS  Google Scholar 

  15. Burea international des poids et measures, in Comptes rendus de la 23 e réunion de la Conférence générale des poids et mesures, 12–16 Nov 2007, BIPM, Sèvres, France, 2010, p. 431

  16. C.W. Chou, D.B. Hume, T. Rosenband, D.J. Wineland, Science 329, 1630 (2010)

    Article  ADS  Google Scholar 

  17. J. Müller, M. Soffel, S.A. Klioner, J. Geod. 82, 133 (2008)

    Article  ADS  MATH  Google Scholar 

  18. G. Cerretto, N. Guyennon, I. Sesia, P. Tavella, F. Gonzalez, J. Hahn, V. Fernandez, A. Mozo, in Proceedings of the European Frequency and Time Forum, Toulouse, France, 2008

  19. Y. He, B.J. Orr, K.G.H. Baldwin, M.J. Wouters, A.N. Luiten, G. Aben, R.B. Warrington, Opt. Express 21, 18754 (2013)

    Article  ADS  Google Scholar 

  20. J.F. Cliche, B. Shillue, IEEE Control Syst. Mag. 26, 19 (2006)

    Article  Google Scholar 

  21. J. Kim, J.A. Cox, J. Chen, F.X. Kärtner, Nat. Photonics 2, 733 (2008)

    Article  ADS  Google Scholar 

  22. F. Levi, R. Ambrosini, D. Calonico, C.E. Calosso, C. Clivati, G.A. Costanzo, P. De Natale, D. Mazzotti, M. Frittelli, G. Galzerano, A. Mura, D. Sutyrin, G.M. Tino, M.E. Zucco, N. Poli, in Proceedings of the Joint UFFC, EFTF and PFM Symposium, 2013, pp. 477–480

  23. C. Delisle, J. Conradi, J. Lightwave Technol. 15, 749–757 (1997)

    Article  ADS  Google Scholar 

  24. O. Terra, G. Grosche, K. Predehl, R. Holzwarth, T. Legero, U. Sterr, B. Lipphardt, H. Schnatz, Appl. Phys. B 97, 541 (2009)

    Article  ADS  Google Scholar 

  25. C. Clivati, D. Calonico, C.E. Calosso, G.A. Costanzo, F. Levi, A. Mura, A. Godone, IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 58, 2582 (2011)

    Article  Google Scholar 

  26. Th Udem, J. Reichert, T.W. Hänsch, M. Kourogi, Opt. Lett. 23, 1387 (1998)

    Article  ADS  Google Scholar 

  27. G. Kramer, W. Klische, in Proceedings of the 2001 IEEE International Frequency Control Symposium and PDA Exhibition, Seattle, WA, 2001, p. 144

  28. S.K. Mitra, Digital Signal Processing (McGraw-Hill, New York, 2006)

    Google Scholar 

  29. D. Allan, in Proceedings of the IEEE 54, 1966, p. 221

  30. A. Godone, S. Micalizio, F. Levi, Metrologia 45, 313 (2008)

    Article  ADS  Google Scholar 

  31. E. Rubiola, Phase Noise and Frequency Stability in Oscillators (Cambridge University Press, Cambridge, 2009)

    Google Scholar 

  32. B.J. Bloom, T.L. Nicholson, J.R. Williams, S.L. Campbell, M. Bishof, X. Zhang, W. Zhang, S.L. Bromley, J. Ye, Nature 506, 7175 (2014)

    Article  Google Scholar 

  33. I. Ushijima, M. Takamoto, M. Das, T. Ohkubo, H. Katori, http://arxiv.org/abs/1405.4071

  34. A. Bercy, S. Guellati-Khelifa, F. Stefani, G. Santarelli, C. Chardonnet, P.-E. Pottie, O. Lopez, A. Amy-Klein, J. Opt. Am. Soc. B 31, 698 (2014)

    Article  ADS  Google Scholar 

  35. S.W. Schediwy, D. Gozzard, K.G.H. Baldwin, B.J. Orr, R.B. Warrington, G. Aben, A.N. Luiten, Opt. Lett. 38, 2893 (2013)

    Article  ADS  Google Scholar 

  36. G. Grosche, Opt. Lett. 39, 2545 (2014)

    Article  ADS  Google Scholar 

  37. C.E. Calosso, E. Bertacco, D. Calonico, C. Clivati, G.A. Costanzo, M. Frittelli, F. Levi, A. Mura, A. Godone, Opt. Lett. 39, 11771180 (2014)

    Article  Google Scholar 

  38. C. Clivati, G. Bolognini, D. Calonico, S. Faralli, F. Levi, A. Mura, N. Poli, Photonics Technol. Lett. 25, 1711 (2013)

    Article  ADS  Google Scholar 

  39. A. Papoulis, in Probability, Random Variables, and Stochastic Processes. International Student Edition (McGraw Hill, Kogakusha, 1965), p. 347

Download references

Acknowledgments

We thank Gesine Grosche and Paul-Eric Pottie for technical help, Giorgio Santarelli for useful discussions, and the GARR Consortium for technical help with the fibers. This work was supported by: the Italian Ministry of Research MIUR under the Progetti Premiali programme and the PRIN09-2009ZJJBLX project; the European Metrology Research Programme (EMRP) under SIB-02 NEAT-FT. The EMRP is jointly funded by the EMRP participating countries within EURAMET and the European Union.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Clivati.

Appendix

Appendix

This appendix demonstrates the formula for the delay-unsuppressed noise on a link with both ends in the same laboratory, and where the same fiber is used to loop the link, instead of two independent fibers. An approach similar to the one used in [13] has been followed.

Let us write the expression for the round-trip optical phase \(\varphi _{\mathrm{rt}}(t)\) and for the forward signal optical phase \(\varphi _{\mathrm{fw}}(t)\), as a function of the fiber noise \(\delta \varphi (z,t)\hbox {d}z\) of an infinitesimal fiber segment dz at time t and position z along the fiber and as a function of the phase correction needed for the link stabilization \(\varphi _{\mathrm{c}}(t)\).

$$\begin{aligned} \varphi _{\mathrm{rt}}(t)&= \varphi _{\mathrm{c}}(t- 2\tau ) +\varphi _{\mathrm{c}}(t)\nonumber \\&\quad + \int \nolimits _0^{L/2} \left( \delta \varphi \left( z,t-2 \tau + n\frac{z}{c}\right) + \delta \varphi \left( z,t- \tau - n\frac{z}{c}\right) \right. \nonumber \\&\left. \quad+\, \delta \varphi \left( z,t- \tau + n \frac{z}{c}\right) + \delta \varphi \left( z,t- n \frac{z}{c}\right) \right) \,\hbox {d}z \nonumber \\ \varphi _{\mathrm{fw}}(t)&= \varphi _{\mathrm{c}}(t- \tau )\nonumber \\&\quad +\int \nolimits _0^{L/2} \left( \delta \varphi (z,t- \tau + n \frac{z}{c})+ \delta \varphi \left( z,t- n\frac{z}{c}\right) \right) \,\hbox {d}z \end{aligned}$$
(3)

where \(L\) is the loop length, in our case L = 1,284 km, and \(\tau =nL/c\) is the link delay. For the sake of clarity, we integrate the length only between 0 and L/2, as the two fiber halves are indeed the same fiber travelled in opposite directions.

Let us now assume that the fiber perturbations evolve linearly with time; this is justified for perturbations which act on timescales much longer than \(\tau\), as in the case of interest in this context. Within this approximation, Eq. 3 is simplified into

$$\begin{aligned} \varphi _{\mathrm{rt}}(t)&= 2\varphi _{\mathrm{c}}(t-\tau ) + \int \nolimits _0^{L/2} 4\delta \varphi (z,t-\tau )\,\hbox {d}z\nonumber \\ \varphi _{\mathrm{fw}}(t)&= \varphi _{\mathrm{c}}(t-\tau ) +\int \nolimits _0^{L/2} 2 \delta \varphi \left( z,t- \frac{\tau }{2}\right) \,\hbox {d}z \end{aligned}$$
(4)

Now, considering that in the closed feedback loop configuration \(\varphi _{\mathrm{rt}}(t,z)=0\), Eq. 4 is rewritten as

$$\begin{aligned} \varphi _{\mathrm{fw}}(t)&= 2\int \nolimits _0^{L/2}\left( \delta \varphi \left( z, t-\frac{\tau }{2}\right) -\delta \varphi (z,t-\tau )\right) \,\hbox {d}z\nonumber \\&= 2\int \nolimits _0^{L/2}\frac{\tau }{2}{\frac{\hbox {d}}{{\hbox {d}t}}}\delta \varphi (z,t-\tau )\,\hbox {d}z \end{aligned}$$
(5)

In the last equation, the evolution of the fiber noise is expressed as a function of its time derivative. For the fundamental theorem of the signal analysis [39], the noise power spectrum of the output of a linear and time-invariant system can be written in terms of the noise of the input; in our case, this theorem can be applied to each fiber segment separately, i.e.:

$$\begin{aligned} S_\varphi (z,f) = \vert H(z,f) \vert ^2 S_{\mathrm{fiber}}(z,f), \end{aligned}$$
(6)

where \(S_\varphi (z,f)\) is the contribution of a fiber segment with length dz to the compensated forward signal phase noise, \(H(z,f)=\mathcal {F}(\tau {\frac{\hbox {d}}{{\hbox {d}t}}})=2\pi i f\tau\) and \(S_{\mathrm{fiber}}(z,f)\) is the phase noise power spectrum of each fiber segment. Assuming that the contributions of each fiber segment are independent, we can perform the integration and end up with the stated result that

$$\begin{aligned} S_\varphi (f) =\frac{1}{4}(2 \pi f \tau )^2 S_{\mathrm{fiber}}(f), \end{aligned}$$
(7)

where \(S_{\mathrm{fiber}}(f)\) is the phase noise of the 1,284-km-long link, and it has been used in the relation

$$\begin{aligned} S_{\mathrm{fiber}}(f)=4 \int \nolimits _0^{L/2} \vert \delta \varphi (z,t) \vert ^2\,\hbox {d}z. \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Calonico, D., Bertacco, E.K., Calosso, C.E. et al. High-accuracy coherent optical frequency transfer over a doubled 642-km fiber link. Appl. Phys. B 117, 979–986 (2014). https://doi.org/10.1007/s00340-014-5917-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-014-5917-8

Keywords

Navigation