Skip to main content
Log in

Evaluation of the systematic shifts and absolute frequency measurement of a single Ca+ ion frequency standard

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

This paper provides a detailed description of the 40Ca+ optical frequency standard uncertainty evaluation and the absolute frequency measurement of the clock transition, as a summary and supplement for the published papers of Yao Huang et al. (Phys Rev A 84:053841, 1) and Huang et al. (Phys Rev A 85:030503, 2). The calculation of systematic frequency shifts, expected for a single trapped Ca+ ion optical frequency standard with a “clock” transition at 729 nm is described. There are several possible causes of systematic frequency shifts that need to be considered. In general, the frequency was measured with an uncertainty of 10−15 level, and the overall systematic shift uncertainty was reduced to below a part in 10−15. Several frequency shifts were calculated for the Ca+ ion optical frequency standard, including the trap design, optical and electromagnetic fields geometry and laboratory conditions, including the temperature condition and the altitude of the Ca+ ion. And we measured the absolute frequency of the 729-nm clock transition at the 10−15 level. An fs comb is referenced to a hydrogen maser, which is calibrated to the SI-second through the Global Positioning System (GPS). Using the GPS satellites as a link, we can calculate the frequency difference of the two hydrogen masers with a long distance, one in WIPM (Wuhan) and the other in National Institute of Metrology (NIM, Beijing). The frequency difference of the hydrogen maser in NIM (Beijing) and the SI-second calculated by BIPM is published on the BIPM web site every 1 month, with a time interval of every 5 days. By analyzing the experimental data obtained within 32 days of a total averaging time of >2 × 10s, the absolute frequency of the 40Ca+ 4 s 2 S 1/2–3d 2D5/2 clock transition is measured as 411 042 129 776 393.0 (1.6) Hz with a fractional uncertainty of 3.9 × 10−15.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Y. Huang, Q. Liu, J. Cao, B. Ou, P. Liu, H. Guan, X. Huang, K. Gao, Phys. Rev. A 84, 053841 (2011)

    Article  ADS  Google Scholar 

  2. Y. Huang, J. Cao, P. Liu, K. Liang, B. Ou, H. Guan, X. Huang, T. Li, K. Gao, Phys. Rev. A 85, 030503 (2012)

    Article  ADS  Google Scholar 

  3. T. Udem, T.W. Hänsch, Nature 416, 233 (2002)

    Article  ADS  Google Scholar 

  4. S.T. Cundiff, J. Ye, Rev. Mod. Phys. 75, 325 (2003)

    Article  ADS  Google Scholar 

  5. G.K. Campbell, A.D. Ludlow, S. Blatt, J.W. Thomsen, M.J. Martin, M.H.G. de Miranda, T. Zelevinsky, M.M. Boyd, J. Ye, S.A. Diddams, T.P. Heavner, T.E. Parker, S.R. Jefferts, Metrologia 45, 539 (2008)

    Article  ADS  Google Scholar 

  6. A.D. Ludlow, T. Zelevinsky, G.K. Campbell, S. Blatt, M.M. Boyd, M.H.G. de Miranda, M.J. Martin, J.W. Thomsen, S.M. Foreman, J. Ye, T.M. Fortier, J.E. Stalnaker, S.A. Diddams, Y. Le Coq, Z.W. Barber, N. Poli, N.D. Lemke, K.M. Beck, C.W. Oates, Science 319, 1805 (2008)

    Article  ADS  Google Scholar 

  7. N.D. Lemke, A.D. Ludlow, Z.W. Barber, T.M. Fortier, S.A. Diddams, Y. Jiang, S.R. Jefferts, T.P. Heavner, T.E. Parker, C.W. Oates, Phys. Rev. Lett. 103, 063001 (2009)

    Article  ADS  Google Scholar 

  8. C.W. Chou, D.B. Hume, J.C.J. Koelemeij, D.J. Wineland, T. Rosenband, Phys. Rev. Lett. 104, 070802 (2010)

    Article  ADS  Google Scholar 

  9. H.S. Margolis, G.P. Barwood, G. Huang, H.A. Klein, S.N. Lea, K. Szymaniec, P. Gill, Science 306, 1355 (2004)

    Article  ADS  Google Scholar 

  10. T. Schneider, E. Peik, C. Tamm, Phys. Rev. Lett. 94, 230801 (2005)

    Article  ADS  Google Scholar 

  11. M. Chwalla, J. Benhelm, K. Kim, G. Kirchmair, T. Monz, M. Riebe, P. Schindler, A.S. Villar, W. Hänsel, C.F. Roos, R. Blatt, M. Abgrall, G. Santarelli, G.D. Rovera, Ph Laurent, Phys. Rev. Lett. 102, 023002 (2009)

    Article  ADS  Google Scholar 

  12. T. Akatsuka, M. Takamoto, H. Katori, Nat. Phys. 4, 954 (2008)

    Article  Google Scholar 

  13. N. Poli, Z.W. Barber, N.D. Lemke, C.W. Oates, L.S. Ma, J.E. Stalnaker, T.M. Fortier, S.A. Diddams, L. Hollberg, J.C. Bergquist, A. Brusch, S. Jefferts, T. Heavner, T. Parker, Phys. Rev. A 77, 050501 (2008)

    Article  ADS  Google Scholar 

  14. N. Huntemann, M. Okhapkin, B. Lipphardt, S. Weyers, C. Tamm, E. Peik, Phys. Rev. Lett. 108, 090801 (2012)

    Article  ADS  Google Scholar 

  15. T. Rosenband, D.B. Hume, P.O. Schmidt, C.W. Chou, A. Brusch, L. Lorini, W.H. Oskay, R.E. Drullinger, T.M. Fortier, J.E. Stalnaker, S.A. Diddams, W.C. Swann, N.R. Newbury, W.M. Itano, D.J. Wineland, J.C. Bergquist, Science 319, 1808 (2008)

    Article  ADS  Google Scholar 

  16. J.E. Stalnaker, S.A. Diddams, T.M. Fortier, K. Kim, L. Hollberg, J.C. Bergquist, W.M. Itano, M.J. Delany, L. Lorini, W.H. Oskay, T.P. Heavner, S.R. Jefferts, F. Levi, T.E. Parker, J. Shirley et al., Appl. Phys. B 89, 167 (2007)

    Article  ADS  Google Scholar 

  17. F.-L. Hong, M. Takamoto, R. Higashi, Y. Fukuyama, J. Jiang, H. Katori, Opt. Express 13, 5253 (2005)

    Article  ADS  Google Scholar 

  18. M. Takamoto, F.-L. Hong, R. Higashi, H. Katori, Nature 435, 321 (2005)

    Article  ADS  Google Scholar 

  19. S.A. King, R.M. Godun, S.A. Webster, H.S. Margolis, L.A.M. Johnson, K. Szymaniec, P.E.G. Baird, P. Gill, New J. Phys. 14, 013045 (2012)

    Article  ADS  Google Scholar 

  20. Alan A. Madej, Pierre Dube, Zichao Zhou, John E. Bernard, Marina Gertsvolf, Phys. Rev. Lett. 109, 203002 (2012)

    Article  ADS  Google Scholar 

  21. Recommendation 2(c2-2009)-(CIPM)

  22. K. Matsubara et al., Appl. Phys. Express 1, 067011 (2008)

    Article  ADS  Google Scholar 

  23. K. Matsubara et al., Joint meeting of the European frequency and time forum and the IEEE international frequency control symposium, 1 &2, 751 (2009)

  24. K. Matsubara et al., Opt. Express 20, 22034 (2012)

    Article  ADS  Google Scholar 

  25. C. Champenois, M. Houssin, C. Lisowski, M. Knoop, G. Hagel, M. Vedel, F. Vedel, Phy. Lett. A 331, 298 (2004)

    Article  ADS  Google Scholar 

  26. S. Gulde, D. Rotter, P. Barton, F. Schmidt-Kaler, R. Blatt, W. Hogervorst, Appl. Phys. B 73, 861 (2001)

    Article  ADS  Google Scholar 

  27. H. Dehmelt, IEEE Trans. Instrum. Meas. 31, 83 (1982)

    Article  ADS  Google Scholar 

  28. G. Barwood, K. Gao, P. Gill, G. Huang, H.A. Klein, IEEE Trans. Instrum. Meas. 50, 543 (2001)

    Article  Google Scholar 

  29. J.E. Bernard, A.A. Madej, L. Marmet, B.G. Whitford, K.J. Siemsen, S. Cundy, Phys. Rev. Lett. 82, 3228 (1999)

    Article  ADS  Google Scholar 

  30. D.J. Berkeland, J.D. Miller, J.C. Bergquist, W.M. Itano, D.J. Wineland, J. Appl. Phys. 83, 5025 (1998)

    Article  ADS  Google Scholar 

  31. A.A. Madej, J.E. Bernard, P. Dube, L. Marmet, R.S. Windeler, Phys. Rev. A 70, 012507 (2004)

    Article  ADS  Google Scholar 

  32. M. Itano, J. Res. NIST 105, 829 (2000)

    Article  Google Scholar 

  33. M.S. Safronova, U.I. Safronova, Phys. Rev. A 83, 012503 (2011)

    Article  ADS  Google Scholar 

  34. B. Arora, M.S. Safronova, C.W. Clark, Phys. Rev. A 76, 064501 (2007)

    Article  ADS  Google Scholar 

  35. J. Mitroy, J.Y. Zhang, Eur. Phys. J. D 46, 415 (2008)

    Article  ADS  Google Scholar 

  36. J. Mitroy, M.S. Safronova, C.W. Clark, J. Phys. B 43, 202001 (2010)

    Article  ADS  Google Scholar 

  37. C.W. Chou, D.B. Hume, T. Rosenband, D.J. Wineland, Science 329, 1630 (2010)

    Article  ADS  Google Scholar 

  38. W. Lewandowski, W.J. Azoubib, W.J. Klepczynski, Proc. IEEE 87, 163 (1999)

    Article  ADS  Google Scholar 

  39. Bureau International des Poids et Mesures (BIPM), Circular T, May&June http://www1.bipm.org/en/scientific/tai/time_ftp.html (2011)

  40. P. Dubé, A.A. Madej, Z. Zhou, J.E. Bernard, Phys. Rev. A 87, 023806 (2013)

    Google Scholar 

Download references

Acknowledgments

We acknowledge H. Shu, H. Fan, B. Guo, Q. Liu, W. Qu, B. Ou, J. Cao and X. Huang for the early works, thank G. Huang for his valuable suggestion, thank T. Li and K. Liang for the GPS comparison works, and thank J. Ye, F.-L. Hong, H. Klein, K. Matsubara, M. Kajita, Y. Li, P. Dubé, L. Ma, Z. Yan and C. Lee for their fruitful discussions. This work is supported by the National Basic Research Program of China (2005CB724502) and (2012CB821301), the National Natural Science Foundation of China (10874205, 10274093 and 11034009) and Chinese Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kelin Gao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, Y., Liu, P., Bian, W. et al. Evaluation of the systematic shifts and absolute frequency measurement of a single Ca+ ion frequency standard. Appl. Phys. B 114, 189–201 (2014). https://doi.org/10.1007/s00340-013-5694-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-013-5694-9

Keywords

Navigation