Skip to main content
Log in

Surface-electrode Paul trap with optimized near-field microwave control

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

We describe the design of a microfabricated Paul trap with integrated microwave conductors for quantum simulation and entangling logic gates. We focus on an approach where near-field amplitude gradients of microwave fields from conductors in the trap structure induce the required spin-motional couplings. This necessitates a strong amplitude gradient of the microwave near-field at the position of the ions, while the field itself needs to be suppressed as much as possible. We introduce a single meander-like microwave conductor structure which provides the desired field configuration. We optimize its parameters through full-wave microwave numerical simulations of the near-fields. The microwave conductor is integrated with additional dc and rf electrodes to form the actual Paul trap. We discuss the influence of the additional electrodes on the field configuration. To be able to fine-tune the overlap of the Paul trap rf null with the microwave field minimum, our trap design allows relative tuning of trap rf electrode amplitudes. Our optimized geometry could achieve a ratio of sideband-to-carrier excitations comparable to experiments with focused laser beams.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. D.F.V. James, Quantum dynamics of cold trapped ions with application to quantum computation. Appl. Phys. B Lasers Opt. 66(2), 181–190 (1998)

    Article  ADS  Google Scholar 

  2. J.I. Cirac, P. Zoller, Quantum computations with cold trapped ions. Phys. Rev. Lett. 74(20), 4091 (1995)

    Article  ADS  Google Scholar 

  3. R. Blatt, D. Wineland, Entangled states of trapped atomic ions. Nature 453(7198), 1008–1015 (2008)

    Article  ADS  Google Scholar 

  4. C. Monroe, J. Kim, Scaling the ion trap quantum processor. Science 339(6124), 1164–1169 (2013). PMID: 23471398

    Google Scholar 

  5. A. Friedenauer, H. Schmitz, J.T. Glueckert, D. Porras, T. Schaetz, Simulating a quantum magnet with trapped ions. Nat. Phys. 4(10), 757–761 (2008)

    Article  Google Scholar 

  6. R. Blatt, C.F. Roos, Quantum simulations with trapped ions. Nat. Phys. 8(4), 277–284 (2012)

    Article  Google Scholar 

  7. P.O. Schmidt, T. Rosenband, C. Langer, W.M. Itano, J.C. Bergquist, D.J. Wineland, Spectroscopy using quantum logic. Science 309(5735), 749–752 (2005)

    Article  ADS  Google Scholar 

  8. C.W. Chou, D.B. Hume, J.C.J. Koelemeij, D.J. Wineland, T. Rosenband, Frequency comparison of two high-accuracy al+ optical clocks. Phys. Rev. Lett. 104(7), 070802 (2010)

    Article  ADS  Google Scholar 

  9. C. Ospelkaus, C.E. Langer, J.M. Amini, K.R. Brown, D. Leibfried, D.J. Wineland, Trapped-ion quantum logic gates based on oscillating magnetic fields. Phys. Rev. Lett. 101(9), 090502 (2008)

    Article  ADS  Google Scholar 

  10. J. Chiaverini, W.E. Lybarger, Laserless trapped-ion quantum simulations without spontaneous scattering using microtrap arrays. Phys. Rev. A 77(2), 022324 (2008)

    Article  ADS  Google Scholar 

  11. S. Seidelin, J. Chiaverini, R. Reichle, J.J. Bollinger, D. Leibfried, J. Britton, J.H. Wesenberg, R.B. Blakestad, R.J. Epstein, D.B. Hume, W.M. Itano, J.D. Jost, C. Langer, R. Ozeri, N. Shiga, D.J. Wineland, Microfabricated surface-electrode ion trap for scalable quantum information processing. Phys. Rev. Lett. 96(25), 253003 (2006)

    Article  ADS  Google Scholar 

  12. F. Mintert, C. Wunderlich, Ion-trap quantum logic using long-wavelength radiation. Phys. Rev. Lett. 87(25), 257904 (2001)

    Article  ADS  Google Scholar 

  13. D.J. Wineland, C.R. Monroe, W.M. Itano, D. Leibfried, B.E. King, D.M. Meekhof, Experimental issues in coherent quantum-state manipulation of trapped atomic ions. J. Res. NIST 103(3), 259 (1998)

    Article  Google Scholar 

  14. D. Kielpinski, C. Monroe, D.J. Wineland, Architecture for a large-scale ion-trap quantum computer. Nature 417(6890), 709–711 (2002)

    Article  ADS  Google Scholar 

  15. C. Ospelkaus, U. Warring, Y. Colombe, K.R. Brown, J.M. Amini, D. Leibfried, D.J. Wineland, Microwave quantum logic gates for trapped ions. Nature 476(7359), 181–184 (2011)

    Article  ADS  Google Scholar 

  16. U. Warring, C. Ospelkaus, Y. Colombe, R. Jördens, D. Leibfried, D.J. Wineland, Individual-ion addressing with microwave field gradients. Phys. Rev. Lett. 110(17), 173002 (2013)

    Article  ADS  Google Scholar 

  17. K.R. Brown, A.C. Wilson, Y. Colombe, C. Ospelkaus, A.M. Meier, E. Knill, D. Leibfried, D.J. Wineland, Single-qubit-gate error below 10−4 in a trapped ion. Phys. Rev. A 84(3), 030303 (2011)

    Article  ADS  Google Scholar 

  18. D.T.C. Allcock, T.P. Harty, C.J. Ballance, N.M. Linke, H.A. Janacek, L. Guidoni, D.P.L. Aude Craik, D.N. Stacey, A.M. Steane and D.M. Lucas (2012) Microwave driven quantum logic gates in 43Ca+. European Conference on Trapped Ions. Obergurgl, Austria

  19. Q.A. Turchette, D. Kielpinski, B.E. King, D. Leibfried, D.M. Meekhof, C.J. Myatt, M.A. Rowe, C.A. Sackett, C.S. Wood, W.M. Itano, C. Monroe, D.J. Wineland, Heating of trapped ions from the quantum ground state. Phys. Rev. A, 61(6), 063418 (2000)

    Google Scholar 

  20. L. Deslauriers, S. Olmschenk, D. Stick, W.K. Hensinger, J. Sterk, C. Monroe, Scaling and suppression of anomalous heating in ion traps. Phys. Rev. Lett. 97(10), 103007 (2006)

    Article  ADS  Google Scholar 

  21. J. Labaziewicz, Y. Ge, P. Antohi, D. Leibrandt, K.R. Brown, I.L. Chuang, Suppression of heating rates in cryogenic surface-electrode ion traps. Phys. Rev. Lett. 100(1), 013001 (2008)

    Article  ADS  Google Scholar 

  22. D.T.C. Allcock, L. Guidoni, T.P. Harty, C.J. Ballance, M.G. Blain, A.M. Steane, D.M. Lucas, Reduction of heating rate in a microfabricated ion trap by pulsed-laser cleaning. New J. Phys. 13(12), 123023 (2011)

    Article  ADS  Google Scholar 

  23. D.A. Hite, Y. Colombe, A.C. Wilson, K.R. Brown, U. Warring, R. Jördens, J.D. Jost, K.S. McKay, D.P. Pappas, D. Leibfried, D.J. Wineland, 100-fold reduction of electric-field noise in an ion trap cleaned with in situ argon-ion-beam bombardment. Phys. Rev. Lett. 109(10), 103001 (2012)

    Article  ADS  Google Scholar 

  24. U. Warring, C. Ospelkaus, Y. Colombe, K.R. Brown, J.M. Amini, M. Carsjens, D. Leibfried, D.J. Wineland, Techniques for microwave near-field quantum control of trapped ions. Phys. Rev. A 87(1), 013437 (2013)

    Article  ADS  Google Scholar 

  25. D.T.C. Allcock (2011) Surface-Electrode Ion Traps for Scalable Quantum Computing. PhD thesis, Hertford College, Oxford

  26. D.T.C. Allcock, T.P. Harty, C.J. Ballance, B.C. Keitch, N.M. Linke, D.N. Stacey, D.M. Lucas, A microfabricated ion trap with integrated microwave circuitry. Appl. Phys. Lett. 102(4), 044103 (2013)

    Google Scholar 

  27. M.H. Oliveira, J.A. Miranda, Biot–Savart-like law in electrostatics. Eur. J. Phys. 22, 31 (2001)

    Article  MATH  Google Scholar 

  28. J.H. Wesenberg, Electrostatics of surface-electrode ion traps. Phys. Rev. A 78(6), 063410 (2008)

    Article  ADS  Google Scholar 

  29. A.P. VanDevender, Y. Colombe, J. Amini, D. Leibfried, D.J. Wineland, Efficient fiber optic detection of trapped ion fluorescence. Phys. Rev. Lett. 105(2), 023001 (2010)

    Article  ADS  Google Scholar 

  30. M. Kumph, M. Brownnutt, R. Blatt, Two-dimensional arrays of radio-frequency ion traps with addressable interactions. New J. Phys. 13(7), 073043 (2011)

    Article  ADS  Google Scholar 

  31. G. Kirchmair, J. Benhelm, F. Zähringer, R. Gerritsma, C.F. Roos, R. Blatt (2009) Deterministic entanglement of ions in thermal states of motion. New J. Phys. 11(2), 023002 (2009)

    Article  ADS  Google Scholar 

  32. D. Porras, J.I. Cirac, Effective quantum spin systems with trapped ions. Phys. Rev. Lett. 92(20), 207901 (2004)

    Article  ADS  Google Scholar 

  33. R. Schmied, J.H. Wesenberg, D. Leibfried, Optimal surface-electrode trap lattices for quantum simulation with trapped ions. Phys. Rev. Lett. 102(23), 233002 (2009)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

We thank D.T.C. Allcock, Y. Colombe, D. Leibfried, J. Schöbel, D. Slichter, U. Warring, and D. J. Wineland for helpful discussions. We acknowledge funding from QUEST, NTH, PTB, and LUH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Carsjens.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carsjens, M., Kohnen, M., Dubielzig, T. et al. Surface-electrode Paul trap with optimized near-field microwave control. Appl. Phys. B 114, 243–250 (2014). https://doi.org/10.1007/s00340-013-5689-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-013-5689-6

Keywords

Navigation