Skip to main content
Log in

Spectral evolution of nano-second laser interaction with Ti target in Air

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

Time-resolved optical emission spectroscopy has been successfully employed to investigate the evolution of plasma produced by the interaction of IR- and visible-pulsed laser beams with a titanium target in ambient air at atmospheric pressure. The characterization of the plasma-assisted pulsed laser ablation of the titanium target is discussed in this study. The emission spectrum produced by the titanium plasma in the wavelength range 200–1,000 nm has been carefully investigated for different experimental conditions. Boltzmann plots have been used in the calculation of the excitation temperature employing Ti II spectral lines at 286.23, 321.71, 325.29, 348.36, and 351.08 nm; this set of lines was tested and proved to be suitable for the measurement of the plasma temperature. The obtained temperature is in good agreement with the one obtained from Ti II spectral lines previously suggested by Hermann et al. [J. Appl. Phys. 77, 2928–2936, 1995, 22]. Moreover, the Stark broadening method has been employed for electron density measurements. In this study, the Stark width of the Ti II spectral line at 350.49 nm was used.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. C. Aragón, J.A. Aguilera, Spectrochim. Acta Part B 63, 893–916 (2008)

    Article  ADS  Google Scholar 

  2. S. Amoruso, R. Bruzzese, N. Spinelli, R. Velotta, J. Phys. B: At. Mol. Opt. Phys. 32, R131–R172 (1999)

    Article  ADS  Google Scholar 

  3. A. De Giacomoa, V.A. Shakhatov, O. De Pascale, Spectrochim. Acta Part B 56, 753–776 (2001)

    Article  Google Scholar 

  4. V. Pinon, D. Anglos, Spectrochim. Acta Part B 64, 950–960 (2009)

    Article  ADS  Google Scholar 

  5. J.A. Aguilera, C. Aragón, V. Madurga, J. Manrique et al., Spectrochim. Acta Part B 64, 993–998 (2009)

    Article  ADS  Google Scholar 

  6. M. Boueri, M. Baudelet, Y. Jin, X. Mao, S.S. Mao, R. Russo, Appl. Surf. Sci. 255, 9566–9571 (2009)

    Article  ADS  Google Scholar 

  7. S. Liu, J. Zhu, Y. Liu, L. Zhao, Mater. Lett. 62, 3881–3883 (2008)

    Article  Google Scholar 

  8. E.A. Ershov-Pavlov, K.Yu. Katsalap, K.L. Stepanov, Yu.A. Stankevich, Spectrochim. Acta Part B 63, 1024–1037 (2008)

    Article  ADS  Google Scholar 

  9. A. Santagata, R. Teghil, A. De Giacomo, M. Dell’Aglio, G.P. Parisi, A. De Bonis, A. Galasso et al., Appl. Surf. Sci. 253, 7792–7797 (2007)

    Article  ADS  Google Scholar 

  10. V.I. Babushok, F.C. DeLucia Jr, J.L. Gottfried, C.A. Munson, A.W. Miziolek, Spectrochim. Acta Part B 61, 999–1014 (2006)

    Article  ADS  Google Scholar 

  11. O. Barthélemy, J. Margot, M. Chaker, M. Sabsabi, F. Vidal, T.W. Johnston, S. Laville, B. Le Drogoff, Spectrochim. Acta Part B 60, 905–914 (2005)

    Article  ADS  Google Scholar 

  12. K. Song, D. Kim, H. Cha, Y. Kim, E.C. Jung, I. Choi, H.S. Yoo, I. Choi, S. Oh, Microchem. J. 76, 95–103 (2004)

    Article  Google Scholar 

  13. D.B. Chrisey, G.K. Hubler, Pulsed Laser Deposition of Thin Films (Wiley Interscience Publication, New York, 1995)

    Google Scholar 

  14. R.E. Russo, D.B. Geohegan, R.F. Haglund, K. Murakami, Laser Ablation (Elsevier, Amsterdam, 1998)

    Google Scholar 

  15. B. Dam, M. Rector, F. Chang, S. Kars, D.G. De Groot, R. Griessen, Appl. Phys. Lett. 65, 1581 (1994)

    Article  ADS  Google Scholar 

  16. A.A. Puretzky, D.B. Geohegan, Appl. Surf. Sci. 127–129, 248–254 (1998)

    Article  Google Scholar 

  17. B.N. Chichcov, C. Momma, S. Nolte, F. Von Alvensleben, A. Tunnermann et al., Appl. Phys. A 63, 109 (1996)

    Article  ADS  Google Scholar 

  18. S. Eliezer, N. Eliaz, E. Grossman, D. Fisher, I. Gouzman, Z. Henis, S. Pecker, Y. Horovitz, M. Fraenkel, S. Maman, Y. Lereah, Phys. Rev. B 69, 144119 (2004)

    Article  ADS  Google Scholar 

  19. S. Amoruso, G. Ausanio, R. Bruzzese, M. Vitiello, X. Wang, Phys. Rev. B 71, 033406 (2005)

    Article  ADS  Google Scholar 

  20. D. Scuderi, O. Albert, D. Moreau, P.P. Pronko, J. Etchepare, Appl. Phys. Lett. 86, 071502 (2005)

    Article  ADS  Google Scholar 

  21. Y.S. Tian, C.Z. Chen, S.T. Li, Q.H. Huo, Appl. Surf. Sci. 242, 177–184 (2005)

    Article  ADS  Google Scholar 

  22. J. Hermann, A. Thomann, C. Boulmer-Leborgne, B. Dubreuil, M. De Giorgi, A. Perrone, A. Luches, N. Mihailescu, J. Appl. Phys. 77, 2928–2936 (1995)

    Article  ADS  Google Scholar 

  23. E. Tognoni, V. Palleschi, M. Corsi, G. Cristoforetti, Spectrochim. Acta Part B 57, 1115 (2002)

    Article  ADS  Google Scholar 

  24. L. Fornarini, V. Spizzichino, F. Colao, R. Fantoni, V. Lazic, Influence of laser wavelength on LIBS diagnostics applied to the analysis of ancient bronzes. Anal. Bioanal. Chem. 385, 272–280 (2006)

    Article  Google Scholar 

  25. D.A. Cremers, L.J. Radziemski, Anal. Chem. 55, 1252 (1983)

    Article  Google Scholar 

  26. J.B. Simeonsson, A.W. Miziolek, Appl. Opt. 32, 939 (1993)

    Article  ADS  Google Scholar 

  27. M. Sabsabi, P. Cielo, Appl. Spectrosc. 49, 499 (1995)

    Article  ADS  Google Scholar 

  28. H.-J. Kunze, in Spectroscopy of Optically Thick Plasmas, ed. by Ph Mertens. 3rd Workshop on Plasma and Laser Technology, Ismailia Oct 3–7, Forschungszentrum Jülich, 1993, p. 31

  29. H. Hegazy, Oxygen spectral lines for diagnostics of atmospheric laser-induced plasmas. Appl. Phys. B Lasers Opt. 98, 601–606 (2010)

    Article  ADS  Google Scholar 

  30. NIST Atomic Spectra Database Lines Data, version 5 (2012), http://www.nist.gov/pml/data/asd.cfm

  31. H.R. Griem, Plasma Spectroscopy (McGraw-Hill Book Company, New York, 1964)

    Google Scholar 

  32. R.H. Huddlestone, S.L. Leonard, Plasma Diagnostic Techniques (Academic Press, New York, 1965)

    Google Scholar 

  33. A.P. Thorne, Spectrophysics (Chapman and Hall, London, 1988)

    Book  Google Scholar 

  34. W. Lochte-Holtgreven, Plasma Diagnostics (AIP Press, New York, 1995)

    Google Scholar 

  35. L.J. Radziemski, T.R. Loree, D.A. Cremers, N.M. Hoffman, Anal. Chem. 55, 1246–1252 (1983)

    Article  Google Scholar 

  36. C. Colón, G. Hatem, E. Verdugo, P. Ruiz, J. Campos et al., J. Appl. Phys. 73, 4752–4758 (1993)

    Article  ADS  Google Scholar 

  37. S.S. Harilal, C.V. Bindhu, R.C. Isaac, V.P. Nampoori, C.P. Vallabhan, J. Appl. Phys. 82, 2140–2146 (1997)

    Article  ADS  Google Scholar 

  38. H.C. Liu, X.L. Mao, J.H. Yoo, R.E. Russo, Spectrochim. Acta B54, 1607 (1999)

    ADS  Google Scholar 

  39. X. Zeng, X.L. Mao, S. Mao, J.H. Yoo, R. Greif, R.E. Russo, J. Appl. Phys. 95, 816 (2004)

    Article  ADS  Google Scholar 

  40. J. Hermann, C. Boulmer-Leborgne, D. Hong, J. Appl. Phys. 83, 691–696 (1998)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

Authors deeply thank Prof. H.-J. Kunze, whose advices, comments and discussions was invaluable.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Hegazy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hegazy, H., Abd El-Ghany, H.A., Allam, S.H. et al. Spectral evolution of nano-second laser interaction with Ti target in Air. Appl. Phys. B 110, 509–518 (2013). https://doi.org/10.1007/s00340-012-5287-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-012-5287-z

Keywords

Navigation