Skip to main content

Advertisement

Log in

Design of a contact grating setup for mJ-energy THz pulse generation by optical rectification

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

According to the recent calculations, more efficient THz pulse generation is possible using relief grating on the front surface of the generating LiNbO3 (LN) crystal for tilted-pulse-front-excitation rather than imaging the pump spot on a reflection grating into the LN crystal. Very recently, it was shown that—compared to a free-standing LN surface-relief grating—significantly higher diffraction efficiency can be reached if the grating profiles are filled with fused silica. Since realisation of such a setup is technically very challenging, in the present paper, we analyse the case where the input side of the LN grating is immersed into a refractive index matching liquid (RIML) instead of a solid material. Our results showed that the diffraction efficiency remains above 90 % for a refractive index ranging 1.45–1.60 of the applied RIML, and it is as high as 99 % for using the RIML for BK7. For this case, we carried out detailed calculations for various grating parameters. We propose a practical setup applying tilted input and slightly tilted output surfaces resulting in low losses and high diffraction efficiency for the pump. We conclude that a contact grating setup using BK7 RIML is suitable for producing THz pulses even in the mJ-energy range.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. E. Budiarto, J. Margolies, S. Jeong, J. Son, IEEE J. Quantum Electron. 32, 1839 (1996)

    Article  ADS  Google Scholar 

  2. K.Y. Kim, A.J. Taylor, J.H. Glownia, G. Rodriguez, Nature Photon. 2, 605 (2008)

    Article  Google Scholar 

  3. X.-C. Zhang, Y. Jin, X.F. Ma, Appl. Phys. Lett. 61, 2764 (1992)

    Article  ADS  Google Scholar 

  4. F. Blanchard, L. Razzari, H.-C. Bandulet, G. Sharma, R. Morandotti, J.-C. Kieffer, T. Ozaki, M. Reid, H.F. Tiedje, H.K. Haugen, F.A. Hegmann, Opt. Express 15, 13212 (2007)

    Article  ADS  Google Scholar 

  5. Q. Xing, L. Lang, Z. Tian, N. Zhang, S. Li, K. Wang, L. Chai, Q. Wang, Opt. Commun. 267, 422 (2006)

    Article  ADS  Google Scholar 

  6. J. Hebling, G. Almási, I.Z. Kozma, J. Kuhl, Opt. Express 10, 1161 (2002)

    Article  ADS  Google Scholar 

  7. A.G. Stepanov, J. Kuhl, I.Z. Kozma, E. Riedle, G. Almási, J. Hebling, Opt. Express 13, 5762 (2005)

    Article  ADS  Google Scholar 

  8. A.G. Stepanov, L. Bonacina, S.V. Chekalin, J.-P. Wolf, Opt. Lett. 33, 2497 (2008)

    Article  ADS  Google Scholar 

  9. J.A. Fülöp, L. Pálfalvi, S. Klingebiel, G. Almási, F. Krausz, S. Karsch, J. Hebling, Opt. Lett. 37, 557 (2012)

    Article  ADS  Google Scholar 

  10. H. Hirori, A. Doi, F. Blanchard, K. Tanaka, Appl. Phys. Lett. 98, 091106 (2011)

    Article  ADS  Google Scholar 

  11. J.A. Fülöp, L. Pálfalvi, G. Almási, J. Hebling, Opt. Express 18, 12311 (2010)

    Article  ADS  Google Scholar 

  12. L. Pálfalvi, J.A. Fülöp, G. Almási, J. Hebling, Appl. Phys. Lett. 92, 171107 (2008)

    Article  ADS  Google Scholar 

  13. T.K. Gaylord, W.E. Baird, M.G. Moharam, Appl. Opt. 25, 4562 (1986)

    Article  ADS  Google Scholar 

  14. T. Clausnitzer, J. Limpert, K. Zöllner, H. Zellmer, H.-J. Fuchs, E.-B. Kley, A. Tünnermann, M. Jupé, D. Ristau, Appl. Opt. 42, 6934 (2003)

    Article  ADS  Google Scholar 

  15. Z. Ren, P.J. Heard, J.M. Marshall, P.A. Thomas, S. Yu, Appl. Phys. 103, 034109 (2008)

    Google Scholar 

  16. K. Nagashima, A. Kosuge, Jpn. J. Appl. Phys. 49, 122504 (2010)

    Article  ADS  Google Scholar 

  17. L. Pálfalvi, J. Heblinga, J. Kuhl, Á. Péter, K. Polgár, J. Appl. Phys. 97, 123505 (2005)

    Article  ADS  Google Scholar 

  18. J.A. Fülöp, L. Pálfalvi, M.C. Hoffmann, J. Hebling, Opt. Express 19, 15090 (2011)

    Article  ADS  Google Scholar 

  19. O. Gayer, Z. Sacks, E. Galun, A. Arie, Appl. Phys. B 91, 343 (2008)

    Article  ADS  Google Scholar 

  20. M.G. Moharam, T.K. Gaylord, J. Opt. Soc. Am. 72, 1385 (1982)

    Article  ADS  Google Scholar 

  21. J.-C. Diels, W. Rudolph, Ultrashort Laser Pulse Phenomena (Elsevier, Boston, 2006)

    Google Scholar 

  22. J. Hebling, Opt. Quant. Electron. 28, 1759 (1996)

    Article  Google Scholar 

  23. R.W. Boyd, Nonlinear Optics, 3rd edn. (Academic Press, Orlando, 2008)

    Google Scholar 

  24. A. Suzuki, T. Iwamoto, A. Enokihara, H. Murata, Y. Okamura, Microelectron. Eng. 85, 1417 (2008)

    Article  Google Scholar 

Download references

Acknowledgments

This work was carried out within the framework of the Hungarian Scientific Research Fund (OTKA) grant numbers 76101, 101846 and 78262, and the SROP-4.2.1.B-10/2/KONV-2010-0002, and hELIos ELI_09-01-2010-0013 projects. We are grateful to J. A. Fülöp for his valuable discussions and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zoltán Ollmann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ollmann, Z., Hebling, J. & Almási, G. Design of a contact grating setup for mJ-energy THz pulse generation by optical rectification. Appl. Phys. B 108, 821–826 (2012). https://doi.org/10.1007/s00340-012-5201-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-012-5201-8

Keywords

Navigation