Skip to main content
Log in

Modeling of Sommerfeld surface waves propagating on a single wire of laser plasma filaments

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

We investigated the possibility of Sommerfeld surface waves to propagate along a conducting plasma channel produced by the filamentation of ultrafast laser pulses in air. Using the approximation of a homogenous cylindrical wire of laser plasma filaments, the phase velocity and the propagation loss of different wire configurations are calculated. The phase velocity of the propagating wave proved to be close to the speed of laser pulses, which makes attaching to such instantaneous plasma channel feasible over distances in the order of the filament length. Wire diameter, electron density and operating frequency are appearing to influence the attaching distances and propagation loss. The attenuation of the propagating wave along the plasma wire appears to be lower than that of free space over some distances in the order of the filamentation length, which opens exciting perspectives for short distance point to point wireless transmission of pulsed-modulated microwaves.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. A. Sommerfeld, Ann. der Physik und Chemie 67, 233 (1899)

    Article  ADS  Google Scholar 

  2. V.N. Datsko, A.A. Kopylov, UFN 178(1), 109 (2008)

    Article  Google Scholar 

  3. H. Cao, A. Nahata, Opt. Express 13(18), 7028 (2005)

    Article  ADS  Google Scholar 

  4. A. Sommerfeld, Electrodynamics (Academic, New York, 1952)

    MATH  Google Scholar 

  5. J.A. Stratton, Electromagnetic theory (McGraw-Hill, New York, 1941)

    MATH  Google Scholar 

  6. E. G. Elmore, Surface wave transmission system over a single conductor having e-fields terminating along the conductor, U.S. 7,567,154 B2, 2009

  7. E. G. Elmore, Method and apparatus for launching a surface wave onto a single conductor transmission line using a slotted flared cone, U.S. 7,009,471 B2, 2006

  8. A. Brodeur, C.Y. Chien, F.A. Ilkov, S.L. Chin, O.G. Kosareva, V.P. Kandidov, Opt. Lett. 22, 304 (1997)

    Article  ADS  Google Scholar 

  9. T.F. Francis, W. Liu, P.T. Simard, A. Becker, S.L. Chin, Phys. Rev. E 74, 036406 (2006)

    Article  ADS  Google Scholar 

  10. H. Yang, J. Zhang, Y. Li, J. Zhang, Y. Li, Z. Chen, H. Teng, Z. Wei, Z. Sheng, Phys. Rev. 66, 016406 (2002)

    ADS  Google Scholar 

  11. S. Tzortzakis, S.M. Franco, Y.-B. Andre, A. Chiron, B. Lamouroux, B.S. Prade, A. Mysyrowicz, Phys. Rev. E 60, R3505 (1999)

    Article  ADS  Google Scholar 

  12. Z.Q. Hao, J. Zhang, Z. Zhang, X. Yuan, Z. Zheng, X. Lu, Z. Jin, Z. Wang, J. Zhong, J. Zhong, Y. Liu, Phys. Rev. E 74, 066402 (2006)

    Article  ADS  Google Scholar 

  13. T. Anderson, Plasma antenna (Artech house, London, 2011)

    Google Scholar 

  14. R. Ackermann, G. Mejean, J. Kasparian, J. Yu, E. Salmon, J.P. Wolf, Opt. Lett. 31, 86–88 (2006)

    Article  ADS  Google Scholar 

  15. G. Mechain, G. Mejean, R. Ackermann, P. Rohwetter, Y.B. Andre, J. Kasparian, B. Prade, K. Stelmaszczyk, J. Yu, E. Salmon, W. Winn, L.A. Schlie, A. Mysyrowicz, R. Sauerbrey, L. Woste, J.-P. Wolf, Appl. Phys. B Lasers Opt. 80, 785–789 (2005)

    Article  ADS  Google Scholar 

  16. G. Mejean, J. Kasparian, J. Yu, E. Salmon, S. Frey, J.P. Wolf, S. Skupin, A. Vincotte, R. Nuter, S. Champeaux, L. Berge, Phys. Rev. E 72, 026611 (2005)

    Article  ADS  Google Scholar 

  17. F. Courvoisier, V. Boutou, J. Kasparian, E. Salmon, G. Mejean, J. Yu, J. Yu, J.P. Wolf, Appl. Phys. Lett. 83, 213–215 (2003)

    Article  ADS  Google Scholar 

  18. S. Skupin, L. Bergé, U. Peschel, F. Lederer, Phys. Rev. Lett. 93, 023901 (2004)

    Article  ADS  Google Scholar 

  19. M. Chateauneuf, S. Payeur, J. Dubois, J.-C. Kieffer, Appl. Phys. Lett. 92, 091104 (2008)

    Article  ADS  Google Scholar 

  20. H. Nowakowska, Z. Zakrzewski, M. Moisan, J. Phys. D Appl. Phys. 34, 1474 (2001)

    Article  ADS  Google Scholar 

  21. M.J. Keskinen, R. Fernsier, H.D. Ladouceur, A.P. Baronavski, P.W. Grounds, P.G. Girardi, Phys. Plasmas 8(12), 5077–5080 (2001)

    Article  ADS  Google Scholar 

  22. M. Alshershby, J.Q. Lin, Z.Q. Hao, J. Phys. D Appl. Phys. 43, 065102 (2012)

    Article  ADS  Google Scholar 

  23. G. Goubau, J. Appl. Phys. 21, 1119 (1950)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  24. S. Stephen, J. Appl. Phys. 22, 504–509 (1951)

    Article  MATH  Google Scholar 

  25. L. Berge, S. Skupin, R. Nuter, J. Kasparian, J.-P. Wolf, Rep. Prog. Phys. 70, 1633–1713 (2007)

    Article  ADS  Google Scholar 

  26. R.R. Musin, M.N. Shneider, A.M. Zheltikov, R.B. Miles, Appl. Opt. 46, 5593 (2007)

    Article  ADS  Google Scholar 

  27. A.L. Peratt, Physics of the plasma universe (Springer, New York, 1991)

    Google Scholar 

  28. V. L. Ginzburg, Propagation of electromagnetic waves in plasma (Gordon and Breach, 1997)

  29. V.V. Valuev, A.E. Dormidonov, V.P. Kandidov, S.A. Shlenov, V.N. Kornienko, V.A. Cherepenin, J. Comm, Technol. Electron. 55, 208 (2010)

    Article  Google Scholar 

  30. V.P. Kandidov, A.E. Dormidonov, O.G. Kosareva, N. Akozbek, M. Scalora, S.L. Chin, Appl. Phys. B Lasers Opt. 87, 29 (2007)

    Article  ADS  Google Scholar 

  31. A. E. Dormidonov, V. V. Valuev, V. L. Dmitriev, S. A. Shlenov, V. P. Kandidov, Proc. SPIE 6733, 67332S-1(2007)

    Google Scholar 

  32. F. Mitschke, Fiber optics physics and technology (Springer, Berlin, 2009)

    Google Scholar 

  33. S. Henin et al., Appl. Phys. B Lasers Opt. 100, 77 (2010)

    Article  ADS  Google Scholar 

  34. D. Hondros, Ann. Phys. 30, 905 (1909)

    Article  MATH  Google Scholar 

  35. J.A. Stratton, Electromagnetic theory (IEEE Press, New York, 2007)

    Google Scholar 

  36. T.-I. Jeon, J. Zhang, D. Grischkowsky, Appl. Phys. Lett. 86, 161904 (2005)

    Article  ADS  Google Scholar 

  37. Z.Q. Hao, J. Zhang, Y.T. Li, X. Lu, X.H. Yuan, Z.Y. Zheng, Z.H. Wang, W.J. Ling, Z.Y. Wei, Appl. Phys. B Laser Opt. 80, 627 (2005)

    Article  ADS  Google Scholar 

  38. B.L. Fontaine, F. Vidal, Z. Jiang, C.Y. Chien, D. Comtois, A. Desparois, T.W. Johnston, J.-C. Kieffer, H. Pépin, H.P. Mercure, Phys. Plasmas 6, 1615 (1999)

    Article  ADS  Google Scholar 

  39. G. Goubau, IRE transaction on microwave theory and techniques 4, 197–200 (1956)

    Article  ADS  Google Scholar 

  40. D.M. Pozar, Microwave engineering, 3rd edn. (Wiley, New York, 2004)

    Google Scholar 

  41. D. C. Friedman, Technical report ARWSE-TR-09004, U.S. Army Armament Research (2009)

Download references

Acknowledgments

This project was supported by National Natural Science Foundation of China under Grant Nos. 60978014, 11074027 and 61178022. Funds from Science and Technology, Department of Jilin Province, Grant No. 20111812, basic fund No. 9140c150302110c1501 and the project-sponsored by SRF for ROCS, SEM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jingquan Lin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alshershby, M., Lin, J. & Hao, Z. Modeling of Sommerfeld surface waves propagating on a single wire of laser plasma filaments. Appl. Phys. B 108, 859–866 (2012). https://doi.org/10.1007/s00340-012-5170-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-012-5170-y

Keywords

Navigation