Skip to main content
Log in

Linewidth of a quantum-cascade laser assessed from its frequency noise spectrum and impact of the current driver

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

We report on the measurement of the frequency noise properties of a 4.6-μm distributed-feedback quantum-cascade laser (QCL) operating in continuous wave near room temperature using a spectroscopic set-up. The flank of the R(14) ro-vibrational absorption line of carbon monoxide at 2196.6 cm−1 is used to convert the frequency fluctuations of the laser into intensity fluctuations that are spectrally analyzed. We evaluate the influence of the laser driver on the observed QCL frequency noise and show how only a low-noise driver with a current noise density below \({\approx} 1~\mbox{nA/}\sqrt{}\mbox{Hz}\) allows observing the frequency noise of the laser itself, without any degradation induced by the current source. We also show how the laser FWHM linewidth, extracted from the frequency noise spectrum using a simple formula, can be drastically broadened at a rate of \({\approx} 1.6~\mbox{MHz/}(\mbox{nA/}\sqrt{}\mbox{Hz})\) for higher current noise densities of the driver. The current noise of commercial QCL drivers can reach several \(\mbox{nA/}\sqrt{}\mbox{Hz}\), leading to a broadening of the linewidth of our QCL of up to several megahertz. To remedy this limitation, we present a low-noise QCL driver with only \(350~\mbox{pA/}\sqrt{}\mbox{Hz}\) current noise, which is suitable to observe the ≈550 kHz linewidth of our QCL.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. In this paper, we introduce the notion of frequency noise inherent to the laser, not to be confused with the commonly used concept of intrinsic frequency noise of the laser. The intrinsic frequency noise represents the white frequency noise induced by spontaneous emission in the laser and is related to the intrinsic linewidth described by the Schawlow–Townes relation [18]. Here, the frequency noise inherent to the laser corresponds to the frequency noise originating from the laser itself, without any contribution from the current source. It includes the contributions of both the flicker noise and the intrinsic noise of the laser.

  2. A further interesting point when discussing the frequency noise of a laser is the white noise component S w, which is directly related to the laser intrinsic linewidth by Δν int=πS w [24, 26, 29]. The intrinsic linewidth corresponds to the Schawlow–Tones linewidth given by [15, 18]:

    $$\varDelta \nu_{\mathrm{ST}} = \frac{v_{g}^{2}hvn_{\mathrm{sp}}\alpha _{\mathrm{tot}}\alpha _{m}(1+ \alpha _{e}^{2})}{4\pi P_{0}}.$$

    As mentioned in Sect. 1, the linewidth enhancement factor α e is close to 0 in QCLs and notably lower than in other semiconductor lasers (typical value in the range 2–10 [36]). Theoretical considerations about the intrinsic linewidth in QCLs have also led to the modified Schawlow–Townes formula introduced by Yamanishi and co-workers [16]. The Schawlow–Townes linewidth can be computed from the above expression where both the total losses α tot (mirror and waveguide) and the mirror losses α m must be known. While the total losses can be straightforwardly determined in a Fabry–Pérot laser, this is not the case in a DFB laser as the losses of the grating (α DFB) have to be accounted for. To estimate the total losses in our DFB, we compared its threshold current with those of a similar Fabry–Pérot device. Assuming similar waveguide losses α wg=4.5 cm−1 in both cases (measured by the manufacturer on Fabry–Pérot devices) and using typical values of the laser parameters provided by the manufacturer, the losses of the grating are estimated to α DFB=1.47 cm−1. The estimated losses are in good agreement with literature data [37] for a 9-μm QCL (α wg=6.7 cm−1, α DFB=0.7 cm−1). With the spontaneous emission coefficient n sp=1, optical power P 0=6 mW and α e=0, we calculate an intrinsic linewidth Δν ST≈380 Hz, which is close to the upper limit of the white frequency noise experimentally assessed from Fig. 5.

References

  1. J. Faist, F. Capasso, D.L. Sivco, C. Sirtori, A.L. Hutchinson, A.Y. Cho, Science 264, 553 (1994)

    Article  ADS  Google Scholar 

  2. D.D. Nelson, B. McManus, S. Urbanski, S. Herndon, M.S. Zahniser, Spectrochim. Acta, Part A, Mol. Biomol. Spectrosc. 60, 3325 (2004)

    Article  ADS  Google Scholar 

  3. D.M. Sonnenfroh, W.T. Rawlins, M.G. Allen, C. Gmachl, F. Capasso, A.L. Hutchinson, D.L. Sivco, J.N. Baillargeon, A.Y. Cho, Appl. Opt. 40, 812 (2001)

    Article  ADS  Google Scholar 

  4. K. Namjou, S. Cai, E.A. Whittaker, J. Faist, C. Gmachl, F. Capasso, D.L. Sivco, A.Y. Cho, Opt. Lett. 23, 219 (1998)

    Article  ADS  Google Scholar 

  5. S. Borri, S. Bartalini, P. De Natale, M. Inguscio, C. Gmachl, F. Capasso, D.L. Sivco, A.Y. Cho, Appl. Phys. B, 85, 223 (2006)

    Article  ADS  Google Scholar 

  6. B.A. Paldus, T.G. Spence, R.N. Zare, J. Oomens, F.J.M. Harren, D.H. Parker, C. Gmachl, F. Capasso, D.L. Sivco, J.N. Baillargeon, A.L. Hutchinson, A.Y. Cho, Opt. Lett. 24, 178 (1999)

    Article  ADS  Google Scholar 

  7. R. Lewicki, G. Wysocki, A.A. Kosterev, F.K. Tittel, Opt. Express 15, 7357 (2007)

    Article  ADS  Google Scholar 

  8. B.A. Paldus, C.C. Harb, T.G. Spence, R.N. Zare, C. Gmachl, F. Capasso, D.L. Sivco, J.N. Baillargeon, A.L. Hutchinson, A.Y. Cho, Opt. Lett. 25, 666 (2000)

    Article  ADS  Google Scholar 

  9. J. Faist, C. Gmachl, F. Capasso, C. Sirtori, D.L. Silvco, J.N. Baillargeon, A.Y. Cho, Appl. Phys. Lett. 70, 2670 (1997)

    Article  ADS  Google Scholar 

  10. A.A. Kosterev, F.K. Tittel, C. Gmachl, F. Capasso, D.L. Sivco, J.N. Baillargeon, A.L. Hutchinson, A.Y. Cho, Appl. Opt. 39, 6866 (2000)

    Article  ADS  Google Scholar 

  11. D. Hofstetter, M. Beck, J. Faist, M. Nägele, M.W. Sigrist, Opt. Lett. 26, 887 (2001)

    Article  ADS  Google Scholar 

  12. M. Germer, M. Wolff, Appl. Opt. 48, B80 (2009)

    Article  ADS  Google Scholar 

  13. M. Beck, D. Hofstetter, T. Aellen, J. Faist, U. Oesterle, M. Illegems, E. Gini, H. Melchior, Science 295, 301 (2002)

    Article  ADS  Google Scholar 

  14. A. Castrillo, E. De Tommasi, L. Gianfrani, L. Sirigu, J. Faist, Opt. Lett. 31, 3040 (2006)

    Article  ADS  Google Scholar 

  15. C.H. Henry, IEEE J. Quantum Electron. QE-18, 259 (1982)

    Article  ADS  Google Scholar 

  16. M. Yamanishi, T. Edamura, K. Fujita, N. Akikusa, IEEE J. Quantum Electron. 44, 12 (2008)

    Article  ADS  Google Scholar 

  17. T. Aellen, R. Maulini, R. Terazzi, N. Hoyler, M. Giovaninni, S. Blaser, L. Hvozdara, J. Faist, Appl. Phys. Lett. 89, 091121 (2006)

    Article  ADS  Google Scholar 

  18. A.L. Schawlow, C.H. Townes, Phys. Rev. 112, 1940 (1958)

    Article  ADS  Google Scholar 

  19. S. Bartalini, S. Borri, P. Cancio, A. Castrillo, I. Galli, G. Giusfredi, D. Mazzotti, L. Gianfrani, P. De Natale, Phys. Rev. Lett. 104, 083904 (2010)

    Article  ADS  Google Scholar 

  20. L. Tombez, J. Di Francesco, S. Schilt, G. Di Domenico, J. Faist, P. Thomann, D. Hofstetter, Opt. Lett. 36, 3109 (2011)

    Article  ADS  Google Scholar 

  21. T. Okoshi, K. Kikuchi, A. Nakayama, Electron. Lett. 16, 630 (1980)

    Article  ADS  Google Scholar 

  22. T.L. Myers, R.M. Williams, M.S. Taubman, C. Gmachl, F. Capasso, D.L. Sivco, J.N. Baillargeon, A.Y. Cho, Opt. Lett. 27, 170 (2002)

    Article  ADS  Google Scholar 

  23. G. Galzerano, A. Gambetta, E. Fasci, A. Castrillo, M. Marangoni, P. Laporta, L. Gianfrani, Appl. Phys. B 102, 725 (2011)

    Article  ADS  Google Scholar 

  24. J.-P. Tourrenc, Caractérisation et modélisation du bruit d’amplitude optique, du bruit de fréquence et de la largeur de raie de VCSELs monomode, Ph.D. dissertation, Université de Montpellier II, 2005

  25. D.M. Baney, W.V. Sorin, in Fiber Optic test and Measurements, Chap. 5, ed. by D. Derickson (Prentice Hall, Englewood Cliffs, (1998)

    Google Scholar 

  26. D.S. Elliott, R. Roy, S.J. Smith, Phys. Rev. A 26, 12 (1982)

    Article  ADS  Google Scholar 

  27. P.B. Gallion, G. Debarge, IEEE J. Quantum Electron. QE-20, 343 (1984)

    Article  ADS  Google Scholar 

  28. G.M. Stéphan, T.T. Tam, S. Blin, P. Besnard, M. Têtu, Phys. Rev. A 71, 043809 (2005)

    Article  ADS  Google Scholar 

  29. L.B. Mercer, J. Lightwave Technol. 9, 485 (1991)

    Article  ADS  Google Scholar 

  30. G. Di Domenico, S. Schilt, P. Thomann, Appl. Opt. 49, 4801 (2010)

    Article  Google Scholar 

  31. K.G. Libbrecht, J.L. Hall, Rev. Sci. Instrum. 64, 2133 (1993)

    Article  ADS  Google Scholar 

  32. R.W.P. Drever, J.L. Hall, F.V. Kowalski, J. Hough, G.M. Ford, A.J. Munley, H. Ward, Appl. Phys. B 31, 97 (1983)

    Article  ADS  Google Scholar 

  33. L.S. Rothman et al., J. Quant. Spectrosc. Radiat. Transf. 110, 533 (2009)

    Article  ADS  Google Scholar 

  34. E.E. Whiting, J. Quant. Spectrosc. Radiat. Transf. 8, 1379 (1968)

    Article  ADS  Google Scholar 

  35. D.K. Killinger, USF HITRAN-PC: Installation and software user manual (version 2.0), University of South Florida (1992)

  36. J. Osinski, J. Buus, IEEE J. Quantum Electron. QE-23, 9 (1987)

    Article  ADS  Google Scholar 

  37. A. Wittmann, Y. Bonetti, M. Fischer, J. Faist, S. Blaser, E. Gini, IEEE Photonics Technol. Lett. 21, 814 (2009)

    Article  ADS  Google Scholar 

  38. S. Bartalini, S. Borri, I. Galli, G. Giusfredi, D. Mazzotti, T. Edamura, N. Akikusa, M. Yamanishi, P. De Natale, Opt. Express 19, 17996 (2011)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Prof. Markus. W. Sigrist (ETH Zurich) for the loan of the absorption gas cell. This work was financed by the Swiss National Science Foundation (SNSF), by the Swiss Confederation Program Nano-Tera.ch which was scientifically evaluated by the SNSF, and by the Gebert-Ruef Foundation in Basel, Switzerland.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Tombez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tombez, L., Schilt, S., Di Francesco, J. et al. Linewidth of a quantum-cascade laser assessed from its frequency noise spectrum and impact of the current driver. Appl. Phys. B 109, 407–414 (2012). https://doi.org/10.1007/s00340-012-5005-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-012-5005-x

Keywords

Navigation