Skip to main content
Log in

Remote sensing with intense filaments enhanced by adaptive optics

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

A method involving a closed loop adaptive optic system is investigated as a tool to significantly enhance the collected optical emissions, for remote sensing applications involving ultrafast laser filamentation. The technique combines beam expansion and geometrical focusing, assisted by an adaptive optics system to correct the wavefront aberrations. Targets, such as a gaseous mixture of air and hydrocarbons, solid lead and airborne clouds of contaminated aqueous aerosols, were remotely probed with filaments generated at distances up to 118 m after the focusing beam expander. The integrated backscattered signals collected by the detection system (15–28 m from the filaments) were increased up to a factor of 7, for atmospheric N2 and solid lead, when the wavefronts were corrected by the adaptive optic system. Moreover, an extrapolation based on a simplified version of the LIDAR equation showed that the adaptive optic system improved the detection distance for N2 molecular fluorescence, from 45 m for uncorrected wavefronts to 125 m for corrected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Emissions trading. United nations framework convention on climate change (2009). http://unfccc.int/kyoto_protocol/mechanisms/emissions_trading/items/2731.php

  2. S. Palanco, L.M. Cabalín, D. Romero, J.J. Laserna, Infrared laser ablation and atomic emission spectrometry of stainless steel at high temperatures. Anal. At. Spectrom. 14, 1883–1887 (1999)

    Article  Google Scholar 

  3. R.M. Measures, Laser Remote Sensing: Fundamentals and Applications (Krieger, Florida 1992)

    Google Scholar 

  4. A. Couairon, A. Myzyrowicz, Femtosecond filamentation in transparent media. Phys. Rep. 441, 47 (2007)

    Article  ADS  Google Scholar 

  5. J. Kasparian, J.-P. Wolf, Physics and applications of atmospheric nonlinear optics and filamentation. Opt. Express 16, 466 (2008)

    Article  ADS  Google Scholar 

  6. L. Bergé, S. Skupin, R. Nuter, J. Kasparian, J.-P. Wolf, Ultrashort filaments of light in weakly-ionized, optically-transparent media. Rep. Prog. Phys. 70, 1633–1713 (2007)

    Article  ADS  Google Scholar 

  7. S.L. Chin, S.A. Hosseini, W. Liu, Q. Luo, F. Théberge, N. Aközbek, A. Becker, V.P. Kandidov, O.G. Kosareva, H. Schroeder, The propagation of powerful femtosecond laser pulses in optical media: physics, applications, and new challenges. Can. J. Phys. 83, 863–905 (2005)

    Article  ADS  Google Scholar 

  8. A. Braun, G. Korn, X. Liu, D. Du, J. Squier, G. Mourou, Self-channeling of high-peak-power femtosecond laser pulses in air. Opt. Lett. 20, 73 (1995)

    Article  ADS  Google Scholar 

  9. K. Stelmaszczyk, P. Rohwetter, G. Méjean, J. Yu, E. Salmon, J. Kasparian, R. Ackermann, J.-P. Wolf, L. Wöste, Long-distance remote laser-induced breakdown spectroscopy using filamentation in air. Appl. Phys. Lett. 85(18), 3977 (2004)

    Article  ADS  Google Scholar 

  10. S.L. Chin, H.L. Xu, Q. Luo, F. Theberge, W. Liu, J.F. Daigle, Y. Kamali, P. Simard, J. Bernhardt, S. Hoseinni, G. Méjean, A. Azarm, C. Marceau, O. Kosareva, V.P. Kandidov, N. Akozbek, A. Becker, G. Roy, P. Mathieu, J.R. Simard, M. Châteauneuf, J. Dubois, Filamentation ‘remote’ sensing of chemical and biological agents/pollutants using only one femtosecond laser. Appl. Phys. B 95, 1 (2009)

    Article  ADS  Google Scholar 

  11. M. Rodriguez, R. Bourayou, G. Méjean, J. Kasparian, J. Yu, E. Salmon, A. Scholz, B. Stecklum, J. Eislöffel, U. Laux, A.P. Hatzes, R. Sauerbrey, L. Wöste, J.-P. Wolf, Kilometer-range nonlinear propagation of femtosecond laser pulses. Phys. Rev. E 69, 036607 (2004)

    Article  ADS  Google Scholar 

  12. J.H. Marburger, Theory of self focusing. Prog. Quantum Electron. 4, 35 (1975)

    Article  ADS  Google Scholar 

  13. J. Kasparian, R. Sauerbrey, S.L. Chin, The critical laser intensity of self-guided light filaments in air. Appl. Phys. B 71, 877 (2000)

    ADS  Google Scholar 

  14. A. Becker, N. Akozbek, K. Vijayalakshmi, E. Oral, C.M. Bowden, S.L. Chin, Intensity clamping and re-focusing of intense femtosecond laser pulses in nitrogen molecular gas. Appl. Phys. B 73, 287–290 (2001)

    ADS  Google Scholar 

  15. P. Rairoux, H. Schillinger, S. Niedermeier, M. Rodriguez, F. Ronneberger, R. Sauerbrey, B. Stein, D. Waite, C. Wedekind, H. Wille, L. Wöste, Remote sensing of the atmosphere using ultrashort laser pulses. Appl. Phys. B 71, 573 (2000)

    Article  ADS  Google Scholar 

  16. S.A. Hosseini, Q. Luo, B. Ferland, W. Liu, S.L. Chin, O.G. Kosareva, N.A. Panov, N. Aközbek, V.P. Kandidov, Competition of multiple filaments during the propagation of intense femtosecond laser pulses. Phys. Rev. A 70, 033802 (2004)

    Article  ADS  Google Scholar 

  17. R. Ackermann, E. Salmon, N. Lascoux, J. Kasparian, P. Rohwetter, K. Stelmaszczyk, S. Li, A. Lindinger, L. Wöste, P. Béjot, L. Bonacina, J.-P. Wolf, Optimal control of filamentation in air. Appl. Phys. Lett. 89, 171117 (2006)

    Article  ADS  Google Scholar 

  18. G. Heck, J. Sloss, R.J. Levis, Adaptive control of the spatial position of white light filaments in an aqueous solution. Opt. Commun. 259(1), 216 (2006)

    Article  ADS  Google Scholar 

  19. T. Baumert, T. Brixner, V. Seyfried, M. Strehle, G. Gerber, Femtosecond pulse shaping by an evolutionary algorithm with feedback. Appl. Phys. B 65(6), 779 (1997)

    Article  ADS  Google Scholar 

  20. F. Théberge, W. Liu, P.Tr. Simard, A. Becker, S.L. Chin, Plasma density inside a femtosecond laser filament in air: Strong dependence on external focusing. Phys. Rev. E 74, 036406 (2006)

    Article  ADS  Google Scholar 

  21. W. Liu, F. Théberge, J.-F. Daigle, P.T. Simard, S.M. Sarifi, Y. Kamali, H.L. Xu, S.L. Chin, An efficient control of ultrashort laser filament location in air for the purpose of remote sensing. Appl. Phys. B 85(1), 55 (2006)

    Article  ADS  Google Scholar 

  22. G. Fibich, Y. Sivan, Y. Ehrlich, E. Louzon, M. Fraenkel, S. Eisenmann, Y. Katzir, A. Zigler, Control of the collapse distance in atmospheric propagation. Opt. Express. 14(12), 4946–4957 (2006)

    Article  ADS  Google Scholar 

  23. H. Wille, M. Rodriguez, J. Kasparian, D. Mondelain, J. Yu, A. Mysyrowicz, R. Sauerbrey, J.P. Wolf, L. Wöste, Teramobile: a mobile femtosecond-terawatt laser and detection system. Eur. Phys. J. A 20, 183 (2002)

    Article  Google Scholar 

  24. Z. Jin, J. Zhang, M.H. Xu, X. Lu, Y.T. Li, Z.H. Wang, Z.Y. Wei, X.H. Yuan, W. Yu, Control of filamentation induced by femtosecond laser pulses propagating in air. Opt. Express. 13, 10424 (2005)

    Article  ADS  Google Scholar 

  25. J.-F. Daigle, Y. Kamali, J. Bernhardt, W. Liu, C. Marceau, A. Azarm, S.L. Chin, Generation of powerful filaments at a long distance using adaptive optics. Opt. Commun. 281, 3327 (2008)

    Article  ADS  Google Scholar 

  26. Night N Adaptive Optics Ltd. (2009). http://www.nightn.ru/

  27. R.K. Tyson, Adaptive Optics Engineering Handbook (Marcel Dekker, New York, 2000)

    Google Scholar 

  28. Laser interferometers Zygo (2009). http://zygo.com/?/met/interferometers/&gclid=COWt17GXvpgCFQMnGgodVzhobA

  29. Schott UG11 transmission data sheet. Optical-Filters.com (2009). http://www.optical-filters.com/ug11.html

  30. J.-F. Daigle, P. Mathieu, G. Roy, J.-R. Simard, S.L. Chin, Multi-constituents detection in contaminated aerosol clouds using remote filament-induced breakdown spectroscopy. Opt. Commun. 278, 147 (2007)

    Article  ADS  Google Scholar 

  31. C. Favre, V. Boutou, S.C. Hill, W. Zimmer, M. Krenz, H. Lambrecht, J. Yu, R.K. Chang, L. Wöste, J.-P. Wolf, White light nanosource with directional emission. Phys. Rev. Lett. 89(3), 035002 (2002)

    Article  ADS  Google Scholar 

  32. Q. Luo, S.A. Hosseini, W. Liu, J.-F. Gravel, O.G. Kosareva, N.A. Panov, N. Aközbek, V.P. Kandidov, G. Roy, S.L. Chin, Effect of beam diameter on the propagation of intense femtosecond laser pulses. Appl. Phys. B 80, 35–38 (2005)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J.-F. Daigle.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Daigle, JF., Kamali, Y., Châteauneuf, M. et al. Remote sensing with intense filaments enhanced by adaptive optics. Appl. Phys. B 97, 701–713 (2009). https://doi.org/10.1007/s00340-009-3713-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-009-3713-7

PACS

Navigation