Skip to main content
Log in

Laser-induced incandescence: excitation and detection conditions, material transformations and calibration

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

Successful implementation of laser-induced incandescence (LII) relies upon judicious choice of excitation and detection conditions. Excitation conditions encompass choice of excitation wavelength and laser fluence. Detection conditions include choice of detection wavelength, spectral band pass about the central wavelength, detection delay and duration relative to the excitation laser pulse usually corresponding to the peak of the signal intensity. Examples of applying these parameters to LII are illustrated by way of examples: soot/polycyclic aromatic hydrocarbon and metal aerosol systems. Tradeoffs must be recognized. Laser-induced chemical and structural changes of the aerosol must be considered, particularly in light of heterogeneous aerosols. Diagnostics of such changes are outlined as they will affect interpretation of the LII signal. Finally, calibration (for LII) must be chosen to be appropriate for aerosols from practical sources as they may be mixed organic and inorganic composition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Schulz, B.F. Kock, M. Hofmann, H. Michelsen, S. Will, B. Bougie, R. Suntz, G. Smallwood, Appl. Phys. B: Lasers Opt. 83, 333 (2006)

    Article  ADS  Google Scholar 

  2. A. Eremin, E. Gurentsov, M. Hofmann, B. Kock, C. Schulz, Appl. Phys. B: Lasers Opt. 83, 449 (2006)

    Article  ADS  Google Scholar 

  3. Th. Lehre, B. Jungfleisch, R. Suntz, H. Bockhorn, Appl. Opt. 42, 2021 (2003)

    Article  ADS  Google Scholar 

  4. B. Axelsson, R. Collin, P.-E. Bengtsson, Appl. Opt. 39, 683 (2000)

    Article  Google Scholar 

  5. C. Allouis, A. D’Alessio, C. Noviello, F. Beretta, Combust. Sci. Technol. 153, 51 (2000)

    Article  Google Scholar 

  6. S. Schraml, S. Will, A. Leipertz, SAE Paper # 1999-01-0146 (1999)

  7. A.V. Filippov, M.W. Markus, P. Roth, J. Aerosol Sci. 30, 71 (1999)

    Article  Google Scholar 

  8. S. Will, S. Schraml, K. Bader, A. Leipertz, Appl. Opt. 37, 5647 (1998)

    Article  ADS  Google Scholar 

  9. H.A. Michelsen, M.A. Linne, B.F. Kock, M. Hofmann, B. Tribalet, C. Schulz, Appl. Phys. B 93, 645 (2008)

    Article  ADS  Google Scholar 

  10. H.A. Michelsen, Appl. Phys. B 94, 103 (2009)

    Article  ADS  Google Scholar 

  11. F. Liu, K.J. Daun, D.R. Snelling, G.J. Smallwood, Appl. Phys. B: Lasers Opt. 83, 355 (2006)

    Article  ADS  Google Scholar 

  12. H. Bladh, P.-E. Bengtsson, Appl. Phys. B 78, 241 (2004)

    Article  ADS  Google Scholar 

  13. G.J. Smallwood, D.R. Snelling, F. Liu, O.L. Gulder, J. Heat Transfer 123, 814 (2000)

    Article  Google Scholar 

  14. K.J. Daun, G.J. Smallwood, F. Liu, J. Heat Transfer 130, 121201-9 (2008)

    Google Scholar 

  15. A.V. Filippov, D.E. Rosner, Int. J. Heat Mass Transfer 43, 127 (2000)

    Article  MATH  Google Scholar 

  16. H.A. Michelsen, F. Liu, B.F. Kock, H. Bladh, A. Boiarciuc, M. Charwath, T. Dreier, R. Hadef, M. Hofmann, J. Reimann, S. Will, P.-E. Bengtsson, H. Bockhorn, F. Foucher, K.-P. Geigle, C. Mounaïm-Rousselle, C. Schulz, R. Stirn, B. Tribalet, R. Suntz, Appl. Phys. B 87, 503 (2007)

    Article  ADS  Google Scholar 

  17. R.L. Vander Wal, K.A. Jensen, M.Y. Choi, Combust. Flame 109, 399 (1997)

    Article  Google Scholar 

  18. R.L. Vander Wal, T.M. Ticich, G.M. Berger, P.D. Patel, Appl. Opt. 41, 5678 (2002)

    Article  ADS  Google Scholar 

  19. R.L. Vander Wal, M.Y. Choi, Carbon 37, 231 (1999)

    Article  Google Scholar 

  20. R.L. Vander Wal, T.M. Ticich, A.B. Stephens, Appl. Phys. B 67, 115 (1998)

    Article  ADS  Google Scholar 

  21. R.L. Vander Wal, in 26th Int. Combustion Symp. (1996), pp. 2269–2275

  22. http://www.cabot-corp.com/Silicas-And-Aluminas

  23. R.L. Vander Wal, G.M. Berger, T.M. Ticich, J. Nanosci. Nanotechnol. 3, 241 (2003)

    Article  Google Scholar 

  24. R.L. Vander Wal, Carbon 40, 2101 (2002)

    Article  Google Scholar 

  25. R.L. Vander Wal, Combust. Flame 130, 37 (2002)

    Article  Google Scholar 

  26. R.L. Vander Wal, L.J. Hall, Combust. Flame 130, 27 (2002)

    Article  Google Scholar 

  27. R.L. Vander Wal, G.M. Berger, L.J. Hall, J. Phys. Chem. B 106, 3564 (2002)

    Article  Google Scholar 

  28. R.L. Vander Wal, Appl. Opt. 37, 607 (1998)

    Article  Google Scholar 

  29. R.L. Vander Wal, Appl. Opt. 35, 6548 (1996)

    Article  ADS  Google Scholar 

  30. H.A. Michelsen, P.O. Witze, D. Kayes, S. Hochgreb, Appl. Opt. 42, 5577 (2003) and references therein

    Article  ADS  Google Scholar 

  31. R.L. Vander Wal, Combust. Flame 110, 281 (1997)

    Article  Google Scholar 

  32. J.A. Steinfeld, Molecules and Radiation: An Introduction to Modern Molecular Spectroscopy (MIT Press, Cambridge, 1981)

    Google Scholar 

  33. R.L. Vander Wal, Combust. Flame 112, 607 (1998)

    Article  Google Scholar 

  34. R.L. Vander Wal, Combust. Sci. Technol. 118, 343 (1996)

    Article  Google Scholar 

  35. P.V. Kamat, J. Phys. Chem. B 110, 21387 (2006)

    Article  Google Scholar 

  36. R.L. Vander Wal, T.M. Ticich, J.R. West, Appl. Opt. 38, 5867 (1999)

    Article  ADS  Google Scholar 

  37. R.L. Vander Wal, A.J. Tomasek, K.W. Street, D.R. Hull, W.K. Thompson, Appl. Spectrosc. 58, 230 (2004)

    Article  ADS  Google Scholar 

  38. R.L. Vander Wal, A.J. Tomasek, Combust. Flame 134, 1 (2003)

    Article  Google Scholar 

  39. R.L. Vander Wal, K.-O. Lee, M.Y. Choi, Combust. Flame 102, 200 (1995)

    Article  Google Scholar 

  40. J.C. Reijenga (coordinator), The Wondrous World of Carbon Nanotubes, A Review of Current Carbon Nanotube Technologies (Eindhoven University, 2003). Available at http://students.chem.tue.nl/ifp03/Wondrous%20World%20of%20Carbon%20Nanotubes_Final.pdf

  41. R.L. Vander Wal, L.J. Hall, Chem. Phys. Lett. 349, 178 (2001)

    Article  ADS  Google Scholar 

  42. R.L. Vander Wal, T.M. Ticich, J. Phys. Chem. B 105, 10249 (2001)

    Article  Google Scholar 

  43. R.L. Vander Wal, G.M. Berger, T.M. Ticich, Appl. Phys. A 77, 885 (2003)

    Article  ADS  Google Scholar 

  44. R.L. Vander Wal, T.M. Ticich, A.B. Stephens, Combust. Flame 116, 291 (1998)

    Article  Google Scholar 

  45. R.L. Vander Wal, T.M. Ticich, Appl. Opt. 38, 1444 (1999)

    Article  ADS  Google Scholar 

  46. S. De Iuliis, F. Migliorini, F. Cignoli, G. Zizak, Appl. Phys. B 83, 397 (2006)

    Article  ADS  Google Scholar 

  47. A. Boiarciuc, F. Foucher, C. Mounaim-Rousselle, Appl. Phys. B 83, 413 (2006)

    Article  ADS  Google Scholar 

  48. B.F. Kock, B. Tribalet, C. Schulz, P. Roth, Combust. Flame 147, 79 (2006)

    Article  Google Scholar 

  49. R.L. Vander Wal, Z. Zhou, M.Y. Choi, Combust. Flame 105, 462 (1996)

    Article  Google Scholar 

  50. T.C. Bond, Environ. Res. Lett. 2, 045030-9 (2007)

    Article  ADS  Google Scholar 

  51. R.L. Vander Wal, V.M. Bryg, M.D. Hayes, Environ. Sci. Technol. (submitted)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. L. Vander Wal.

Additional information

A research paper in response to the call for papers from the Third International Discussion Meeting and Workshop on Laser-Induced Incandescence July 30th–August 1st, Ottawa, Canada (2008).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vander Wal, R.L. Laser-induced incandescence: excitation and detection conditions, material transformations and calibration. Appl. Phys. B 96, 601–611 (2009). https://doi.org/10.1007/s00340-009-3521-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-009-3521-0

PACS

Navigation