Applied Physics B

, Volume 95, Issue 2, pp 195–203

The “arch” of simulating quantum spin systems with trapped ions

  • H. Schmitz
  • A. Friedenauer
  • C. Schneider
  • R. Matjeschk
  • M. Enderlein
  • T. Huber
  • J. Glueckert
  • D. Porras
  • T. Schaetz
Open AccessArticle

DOI: 10.1007/s00340-009-3455-6

Cite this article as:
Schmitz, H., Friedenauer, A., Schneider, C. et al. Appl. Phys. B (2009) 95: 195. doi:10.1007/s00340-009-3455-6

Abstract

We cannot translate quantum behavior arising with superposition states or entanglement efficiently into the classical language of conventional computers  (Feynman et al. in Int. J. Theor. Phys. 21:467, 1982). A universal quantum computer could describe and help to understand complex quantum systems. But it is envisioned to become functional only within the next decade(s). A shortcut was proposed via simulating the quantum behavior of interest in another quantum system, where all relevant parameters and interactions can be controlled and observables of interest detected sufficiently well. For example simulating quantum spin systems within an architecture of trapped ions (Porras and Cirac in Phys. Rev. Lett. 92:207901, 2004). Here we specify how we simulate the spin and all necessary interactions and how we calibrate their amplitudes. For example via a two-ion phase-gate operation on two axial motional modes simultaneously at a fidelity exceeding 95%. We explain the complete mode of operation of a quantum simulator on the basis of our simple model case—the proof of principle experiment of simulating the transition of a quantum magnet from paramagnetic into entangled ferromagnetic order  (Friedenauer et al. in Nat. Phys. 4:757, 2008) and emphasize some of the similarities and differences with a quantum computer.

PACS

03.67.Pp42.50.vk75.10.Jm77.80.Bh
Download to read the full article text

Copyright information

© The Author(s) 2009

Authors and Affiliations

  • H. Schmitz
    • 1
  • A. Friedenauer
    • 1
  • C. Schneider
    • 1
  • R. Matjeschk
    • 1
  • M. Enderlein
    • 1
  • T. Huber
    • 1
  • J. Glueckert
    • 1
  • D. Porras
    • 1
  • T. Schaetz
    • 1
  1. 1.Max Planck Institute of Quantum OpticsGarchingGermany