Skip to main content
Log in

Absolute, high resolution water transpiration rate measurements on single plant leaves via tunable diode laser absorption spectroscopy (TDLAS) at 1.37 μm

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

A new sampling-free and calibration-free multi-channel hygrometer using near infrared (NIR) tunable diode laser absorption spectroscopy (TDLAS) at 1.37 μm was developed and used to determine absolute transpiration rates of single plant leafs. Four 8×6× 4 cm3, fiber-coupled absorption cells are used to simultaneously measure absolute water vapor concentrations with an absolute accuracy of about 5% and a temporal resolution of about 2 s. Two chambers (BOTTOM, TOP) are directly attached to the leaf surface, while two chambers (IN, OUT) analyze the purge gas supplied to the plant leaf and the total outflow of the leaf chambers. The BOTTOM–TOP comparison provided a direct, leaf-side resolved ratio of stomatal conductance and–by taking into account the purge gas flow and the leaf area exposed–leaf side resolved water transpiration rates. The OUT–IN-difference yielded the total leaf transpiration rate with 2 μmol/m2/s resolution. The new multi-point hygrometer was validated by monitoring of the transpiration dynamics of a plant of the species Epipremnum pinnatum (L.) Engl. during diurnal variation of the leaf irradiation. During these experiments the differential H2O concentration resolution between two chambers was determined to be better than 3 ppm at Δt= 2 s (i.e. better than 711 ppb m Hz1/2). This performance was verified by an Allan analysis over a 30 min time period using CH4 as a surrogate absorber and yielded an average optimum optical resolution of 4.9×10-6 for 83 s measurement time, i.e. a CH4 resolution of 892 ppb, which corresponds to the optical resolution needed for a water sensitivity of 454 ppb m Hz1/2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Alistair, F. Hetherington, I. Woodward, Nature 424, 901 (2003)

    Article  ADS  Google Scholar 

  2. A. Baumgartner, E. Reichel Die Weltwasserbilanz/The World Water Balance (Oldenbourg Verlag, München, 1975)

  3. W. Cramer, A. Bondeau, F.I. Woodward, I.C. Prentice, R.A. Betts, V. Brovkin, P.M. Cox, V. Fisher, J. Foley, A.D. Friend, C. Kucharik, M.R. Lomas, N. Ramankutty, S. Sitch, B. Smith, A. White, C. Young-Molling, Global Change Biol. 7, 357 (2001)

  4. D. Gerten, S. Schaphoff, W. Lucht, Clim. Change 80, 277 (2007)

    Google Scholar 

  5. D. Gerten, S. Schaphoff, U. Haberlandt, W. Lucht, S. Sitch, J. Hydrol. 286, 249 (2004)

    Google Scholar 

  6. J. Monteith, M. Unsworth, Principles of Environmental Physics (Academic Press, San Diego, 2007)

  7. P.S. Nobel, Physicochemical and Environmental Plant Physiology (Academic Press, Amsterdam, 2005)

  8. G.D. Farquhar, T.D. Sharkey, Ann. Rev. Plant Physiol. 33, 317 (1982)

    Google Scholar 

  9. S.P. Long, P.K. Farage, R.L. Garcia, J. Exp. Bot. 47, 1629 (1996)

    Google Scholar 

  10. G. Prytz, C.M. Futsaether, A. Johnsson, New Phytol. 158, 259 (2003)

    Article  Google Scholar 

  11. A. Johnsson, Rhythms in Plants (Springer, Berlin, Heidelberg, 2007)

    Book  Google Scholar 

  12. P. Vogel, V. Ebert, Appl. Phys. B 72, 127 (2001)

    ADS  Google Scholar 

  13. V. Ebert, J. Fitzer, I. Gerstenberg, K.-U. Pleban, H. Pitz, J. Wolfrum, M. Jochem, J. Martin, VDI-Berichte 1366, 5th Int. Symposium on Gas Analysis by Tunable Diode Lasers (1998), pp. 145–154

  14. V. Ebert, J. Fitzer, I. Gerstenberg, K.-U. Pleban, H. Pitz, J. Wolfrum, M. Jochem, J. Martin, Proc. Combust. Inst. 27, 1301 (1998)

    Google Scholar 

  15. V. Ebert, T. Fernholz, C. Giesemann, H. Pitz, H. Teichert, J. Wolfrum, H. Jaritz, Proc. Combust. Inst. 28, 423 (2000)

    Article  Google Scholar 

  16. D.C. Hovde, C.A. Parsons, Appl. Opt. 36, 1135 (1997)

    Article  ADS  Google Scholar 

  17. A. Fix, V. Weiss, G. Ehret, Appl. Opt. 7, 837 (1998)

    ADS  Google Scholar 

  18. H. Cattaneo, R. Hernberg, Appl. Opt. 44, 6593 (2005)

    Article  ADS  Google Scholar 

  19. R.D. May, J. Geophys. Res. 103, 19161 (1998)

    Article  ADS  Google Scholar 

  20. G. Durry, G. Megie, Appl. Opt. 38, 7342 (1999)

    Article  ADS  Google Scholar 

  21. W. Gurlit, J.P. Burrows, R. Zimmermann, U. Platt, C. Giesemann, J. Wolfrum, V. Ebert, Appl. Opt. 44, 91 (2005)

    ADS  Google Scholar 

  22. V. Ebert, In situ Absorption Spectrometers using Near-IR Diode Lasers and Rugged Multi-Path-Optics For Environmental Field Measurements, paper WB1, in: Laser Applications to Chemical and Environmental Analysis, OSA Technical Digest (Optical Society of America, Washington DC 2006)

  23. A.R. Awtry, B. T Fisher, R.A. Moffatt, V. Ebert, J.W. Fleming, Proc. Combust. Inst. 31, 799 (2006)

    Google Scholar 

  24. J.T.C. Liu, G.B. Rieker, J.B. Jeffries, M.R. Gruber, C.D. Carter, T. Mathur R.K. Hanson, Appl. Opt. 44, 6701 (2005)

    Article  ADS  Google Scholar 

  25. S. Wagner, B.T. Fisher, J.W. Fleming, V. Ebert, Proc. Combust. Inst. (2008), in press

  26. L. Gianfrani, G. Gagliardi, M. van Burgel, E. Kerstel, Opt. Express 11, 1566 (2003)

    Article  ADS  Google Scholar 

  27. X. Zhou, X. Liu, J.B. Jeffries, R.K. Hanson, Meas. Sci. Technol. 14, 1459 (2003)

    Article  ADS  Google Scholar 

  28. C.R. Webster, G.J. Flesch, K. Mansour, R. Haberle, J. Bauman, Appl. Opt. 43, 4436 (2004)

    Article  ADS  Google Scholar 

  29. E.R.T. Kerstel, R. van Trigt, N. Dam, J. Reuss, Anal. Chem. 71, 5297 (1999)

    Article  Google Scholar 

  30. K. Wunderle, S. Wagner, V. Ebert, 2.7 μm DFB Diode Laser Spectrometer for Sensitive Spatially Resolved H2O Vapor Detection, Paper no. LMB1 accepted for preseantation at 2008 Laser Applications to Chemical, Security and Environmental Analysis (LACSEA) (St. Petersburg, FL, USA, March 17–20, 2008)

  31. L. Joly, B. Parvitte, V. Zeninari, G. Durry, Appl. Phys. B 86, 743 (2007)

    Article  ADS  Google Scholar 

  32. K. Wunderle, T. Fernholz, V. Ebert, Selektion optimaler Absorptionslinien für abstimmbare Laserabsorptionsspektrometer, VDI Berichte 1959 (VDI, Düsseldorf, 2006)

    Google Scholar 

  33. L.S. Rothman, D. Jacquemart, A. Barbe, D. Chris Benner, M. Birk, L.R. Brown, M.R. Carleer, C. Chackerian, K. Chance, L.H. Coudert, V. Dana, V.M. Devi, J.-M. Flaud, R.R. Gamache, A. Goldman, J.-M. Hartmann, K.W. Jucks, A.G. Maki, J.-Y. Mandin, S.T. Massie, J. Orphal, A. Perrin, C.P. Rinsland, M.A.H. Smith, J. Tennyson, R.N. Tolchenov, R.A. Toth, J. Vander Auwera, P. Varanasi, G. Wagner, J. Quantum Spectrosc. Radiat. Transf. 96, 139 (2005)

  34. V. Ebert, H. Teichert, C. Giesemann, H. Saathoff, U. Schurath, Tech. Mess. 72, 23 (2005)

    Article  Google Scholar 

  35. O. Möhler, S. Büttner, C. Linke, M. Schnaiter, H. Saathoff, O. Stetzer, R. Wagner, M. Krämer, A. Mangold, V. Ebert, U. Schurath, J. Geophys. Res. D 110, 11210 (2005)

    Article  ADS  Google Scholar 

  36. A. Mangold, R. Wagner, H. Saathoff, U. Schurath, C. Giesemann, V. Ebert, M. Krämer, O. Möhler, Meteorol. Z. 14, 485 (2005)

    Google Scholar 

  37. V. Ebert, J. Wolfrum, Absorption Spectroscopy in Optical Measurements – Techniques and Applications (Springer, Heidelberg München, 2001)

    Google Scholar 

  38. C. Schulz, A. Dreizler, V. Ebert, J. Wolfrum, Handbook of Experimental Fluid Dynamics (Springer, Heidelberg Berlin, 2007)

    Google Scholar 

  39. V. Ebert, H. Teichert, P. Strauch, T. Kolb, H. Seifert, J. Wolfrum, Proc. Combust. Inst. 30, 1611 (2005)

    Article  Google Scholar 

  40. E. Schlosser, J. Wolfrum, L. Hildebrandt, H. Seifert, B. Oser, V. Ebert, Appl. Phys. B 75, 237 (2002)

    Article  ADS  Google Scholar 

  41. A.R. Awtry, J.W. Fleming, V. Ebert, Opt. Lett. 31, 900 (2006)

    Article  ADS  Google Scholar 

  42. H. Teichert, T. Fernholz, V. Ebert, Appl. Opt. 42, 2043 (2003)

    Article  ADS  Google Scholar 

  43. C. Lauer, D. Weber, S. Wagner, V. Ebert, Open-path Laserabsorptionsspektrometer zur Absolutbestimmung klimarelevanter Spurengase wie CH4 und CO, ed. by G. Gerlach, P. Hauptmann (Dresdner Beiträge zur Sensorik, Dresden, 2007), Vol. 29

  44. C. Lauer, D. Weber, S. Wagner, V. Ebert, Calibration Free Measurement of Atmospheric Methane Background via Tunable Diode Laser Absorption Spectroscopy at 1.6 μm, Paper no. LMA2 accepted for presentation at 2008 Laser Applications to Chemical, Security and Environmental Analysis (LACSEA) (St. Petersburg, FL, USA, March 17–20, 2008)

  45. S.E. Casanova, K.P. Shine, T. Gardiner, M. Coleman, H. Pegrum, J. Geophys. Res. D 111, 11302 (2006)

    Article  ADS  Google Scholar 

  46. S. Hunsmann, S. Wagner, H. Saathoff, O. Möhler, U. Schurath, V. Ebert, Messung der Temperaturabhängigkeit der Linienstärken und Druckverbreiterungskoeffizienten von H2O-Absorptionslinien im 1.4 μm-Band (VDI Berichte 1959, VDI, Düsseldorf, 149–164, 2006)

  47. V. Ebert, C. Giesemann, J. Koeth, H. Teichert, New Room-Temperature 2.3 μm DFB-Diode Lasers: First Spectroscopic Characterization and CO-Detection, Laser Applications to Chemical and Environmental Analysis, OSA Technical Digest (LACSEA) (Optical Society of America, Washington DC, paper TuF-98, 2004)

  48. S. Wagner, V. Ebert, VDI Berichte 1959 (VDI, Düsseldorf, 2006) pp. 115–132

  49. E.E. Whitting, J. Quantum Spectrosc. Radiat. Transf. 8, 1379 (1968)

  50. D.J. Brassington, Spectroscopy in Environmental Science (Wiley, New York, 1995)

    Google Scholar 

  51. P. Werle, P. Mazzinghi, F. D’Amato, M. De Rosa, K. Maurer, F. Slemr, Spectrochim. Acta A 60, 1685 (2004)

    Article  Google Scholar 

  52. H. Meidner, Three Hundred Years of Research into Stomata in: Stomatal Function ed. by E. Zeiger, G.D. Farquhar, I.R. Cowan (Stanford University Press, Stanford, 1987)

  53. V. Ebert, S. Wagner, K. Wunderle, High-sensitivity direct TDLAS CO2 sensor using new 2.6 μm DFB diode lasers, Poster at the 2nd Int. Workshop on Stable Isotope Ratio Infrared Spectrometry 7–8 September, Florence, Italy (2007)

  54. K.A. Mott, D. Peak, Ann. Bot. 99, 219 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Ebert.

Additional information

PACS

07.57.Ty; 42.62.Fi; 42.62.Be; 42.55.Px; 82.80.Gk

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hunsmann, S., Wunderle, K., Wagner, S. et al. Absolute, high resolution water transpiration rate measurements on single plant leaves via tunable diode laser absorption spectroscopy (TDLAS) at 1.37 μm. Appl. Phys. B 92, 393–401 (2008). https://doi.org/10.1007/s00340-008-3095-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-008-3095-2

Keywords

Navigation