Skip to main content
Log in

Complex plasmas – new discoveries in strong coupling physics

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

Complex (dusty) plasmas are a unique system for studying all sorts of dynamical processes at the most elementary individual particle level. Microparticles in complex plasmas can be easily viewed and manipulated. Moreover, collective processes in the strong coupling regime can be virtually undamped (in contrast to colloidal suspensions) and hence full dynamical information can be obtained at all the relevant time scales. Therefore, investigations of dynamical phenomena in complex plasmas can provide important insights into major generic processes governing the behavior of other strong coupling particle systems. In this article we focus on the kinetics of self-organization observed in small clusters as well as extended crystals, and report on some new findings that illustrate significant interdisciplinary potential of complex plasma studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Genetics for the Human Race, Special Issue of Nature Genetics 36 (2004)

  2. J.-M. Lehn, Perspectives in Supramolecular Chemistry: From Molecular Recognition Towards Self-Organization, in Current Challenges on Large Supramolecular Assemblies, ed. by G. Tsoucaris (Kluwer Academic, Dordrecht, 1998), pp. 417–419

  3. C. Fuchs, Stud. Polit. Econ. 73, 183 (2004)

    Google Scholar 

  4. K.G. Wilson, Rev. Mod. Phys. 55, 583 (1983)

    Article  ADS  Google Scholar 

  5. I. Prigogine, Non-Equilibrium Statistical Mechanics (New York, Wiley, 1962)

    MATH  Google Scholar 

  6. D.H.E. Gross, Microcanonical Thermodynamics: Phase Transitions in “Small” Systems (World Scientific, Singapore, 2001)

  7. E. Lorenz, J. Atmosph. Sci. 20, 130 (1963)

    Article  ADS  Google Scholar 

  8. B. Mandelbrot, The Fractal Geometry of Nature (W.H. Freeman, San Francisco, 1982)

    MATH  Google Scholar 

  9. J. Alder, T.E. Wainwright, J. Chem. Phys. 31, 459 (1959)

    Article  ADS  MathSciNet  Google Scholar 

  10. D. Frenkel, B. Smit, Understanding Molecular Simulation (Academic Press, San Diego, 2001)

    Google Scholar 

  11. T. Kizuka, N. Tanaka, Phys. Rev. B 56, R10079 (1997)

    Article  ADS  Google Scholar 

  12. O. Kienzle, M. Exner, F. Ernst, Phys. Stat. Solidi A 166, 57 (1998)

    Article  ADS  Google Scholar 

  13. C. Scheu, W. Stein, M. Rühle, Phys. Stat. Solidi B 222, 5199 (2000)

    Article  Google Scholar 

  14. R.C. Ashoori, Nature 379, 413 (1996)

    Article  ADS  Google Scholar 

  15. P.E. Marszalek, Small 3, 809 (2007)

    Article  Google Scholar 

  16. J. Morfill, F. Kühner, K. Blank, R.A. Lugmaier, J. Sedlmair, H.E. Gaub, Biophys. J. 93, 2400 (2007)

    Article  Google Scholar 

  17. D.H.E. Dubin, T. M. O’Neil, Rev. Mod. Phys. 71, 87 (1999)

    Article  ADS  Google Scholar 

  18. A. Mortensen, E. Nielsen, T. Matthey, M. Drewsen, Phys. Rev. Lett. 96, 103001 (2006)

    Article  ADS  Google Scholar 

  19. T. Killian, S. Kulin, S.D. Bergeson, L. Orozco, S.L. Rolston, Phys. Rev. Lett. 83, 4776 (1999)

    Article  ADS  Google Scholar 

  20. D.G. Grier, C.A. Murray, J. Chem. Phys. 100, 9088 (1994)

    Article  ADS  Google Scholar 

  21. V.J. Anderson, H.N.W. Lekkerkerker, Nature 416, 811 (2002)

    Article  ADS  Google Scholar 

  22. B.M. Hegelich, B.J. Albright, J. Cobble, K. Flippo, S. Letzring, M. Paffett, H. Ruhl, J. Schreiber, R.K. Schulze, J.C. Fernandez, Nature 439, 441 (2006)

    Article  ADS  Google Scholar 

  23. V. Fortov, I. Iakubov, A. Khrapak, Physics of Strongly Coupled Plasma (Oxford University Press, Oxford, 2007)

    Google Scholar 

  24. V.E. Fortov, A.V. Ivlev, S.A. Khrapak, A.G. Khrapak, G.E. Morfill, Phys. Rep. 421, 1 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  25. J. Chakrabarti, J. Dzubiella, H. Lowen, Phys. Rev. E 70, 012401 (2004)

    Article  ADS  Google Scholar 

  26. T. Beatus, T. Tlusty, R. Bar-Ziv, Nature Phys. 2, 743 (2006)

    Article  ADS  Google Scholar 

  27. P. Leiderer, W. Ebner, V.B. Shikin, Surf. Sci. 113, 405 (1987)

    Article  Google Scholar 

  28. V.A. Schweigert, F.M. Peeters, Phys. Rev. B 51, 7700 (1995)

    Article  ADS  Google Scholar 

  29. A. Melzer, Phys. Rev. E 67, 016411 (2003)

    Article  ADS  Google Scholar 

  30. S. Nunomura, J. Goree, S. Hu, X. Wang, A. Bhattacharjee, K. Avinash, Phys. Rev. Lett. 89, 035001 (2002)

    Article  ADS  Google Scholar 

  31. W.-T. Juan, Z.-H. Huang, J.-W. Hsu, Y.-J. Lai, L. I, Phys. Rev. E 58, R6947 (1998)

    Article  ADS  Google Scholar 

  32. M. Klindworth, A. Melzer, A. Piel, V.A. Schweigert, Phys. Rev. B 61, 8404 (2000)

    Article  ADS  Google Scholar 

  33. B.M. Annaratone, T. Antonova, D.D. Goldbeck, H.M. Thomas, G.E. Morfill, Plasma Phys. Control Fusion 46, B495 (2004)

    Article  Google Scholar 

  34. T. Antonova, B.M. Annaratone, D.D. Goldbeck, V. Yaroshenko, H.M. Thomas, G.E. Morfill, Phys. Rev. Lett. 96, 115001 (2006)

    Article  ADS  Google Scholar 

  35. O. Arp, D. Block, A. Piel, A. Melzer, Phys. Rev. Lett. 93, 165004 (2004)

    Article  ADS  Google Scholar 

  36. M. Bonitz, D. Block, O. Arp, V. Golubnychiy, H. Baumgartner, P. Ludwig, A. Piel, A. Filinov, Phys. Rev. Lett. 96, 075001 (2006)

    Article  ADS  Google Scholar 

  37. K.J. Strandburg, Rev. Mod. Phys. 60, 161 (1988)

    Article  ADS  Google Scholar 

  38. V. Nosenko, J. Goree, A. Piel, Phys. Plasmas 13, 032106 (2006)

    Article  Google Scholar 

  39. D. Samsonov, S.K. Zhdanov, R.A. Quinn, S.I. Popel, G.E. Morfill, Phys. Rev. Lett. 92, 255004 (2004)

    Article  ADS  Google Scholar 

  40. C.A. Knapek, D. Samsonov, S. Zhdanov, U. Konopka, G.E. Morfill, Phys. Rev. Lett. 98, 015004 (2007)

    Article  ADS  Google Scholar 

  41. M. Rubin-Zuzic, G.E. Morfill, A.V. Ivlev, R. Pompl, B.A. Klumov, W. Bunk, H.M. Thomas, H. Rothermel, O. Havnes, A. Fouquet, Nature Phys. 2, 181 (2006)

    Article  ADS  Google Scholar 

  42. A.P. Nefedov, G.E. Morfill, V.E. Fortov, H.M. Thomas, H. Rothermel, T. Hagel, A.V. Ivlev, M. Zuzic, B.A. Klumov, A.M. Lipaev, V.I. Molotkov, O.F. Petrov, Y.P. Gidzenko, S.K. Krikalev, W. Shepherd, A.I. Ivanov, M. Roth, H. Binnenbruck, J.A. Goree, Y.P. Semenov, New J. Phys. 5, 33 (2003)

    Article  ADS  Google Scholar 

  43. E.M. Lifshitz, L.P. Pitaevskii, Physical Kinetics (Pergamon, Oxford, 1981)

    Google Scholar 

  44. M. Kästner, B. Voigtländer, Phys. Rev. Lett. 82, 2745 (1999)

    Article  Google Scholar 

  45. S.K. Zhdanov, A.V. Ivlev, G.E. Morfill, Phys. Plasmas 12, 072312 (2005)

    Article  MathSciNet  Google Scholar 

  46. A.V. Ivlev, S.K. Zhdanov, B.A. Klumov, G.E. Morfill, Phys. Plasmas 12, 092104 (2005)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A.V. Ivlev.

Additional information

PACS

52.27.Lw

Rights and permissions

Reprints and permissions

About this article

Cite this article

Morfill, G., Ivlev, A., Rubin-Zuzic, M. et al. Complex plasmas – new discoveries in strong coupling physics. Appl. Phys. B 89, 527–534 (2007). https://doi.org/10.1007/s00340-007-2872-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-007-2872-7

Keywords

Navigation