Skip to main content
Log in

Nonexponential decay of Bose–Einstein condensates: a numerical study based on the complex scaling method

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

We study the decay dynamics of an interacting Bose–Einstein condensate in the presence of a metastable trapping potential from which the condensate can escape via tunneling through finite barriers. The time-dependent decay process is reproduced by means of the instantaneous decay rates of the condensate at a given population of the quasi-bound state, which are calculated with the method of complex scaling. Both for the case of a double-barrier potential as well as for the case of a tilted periodic potential, we find pronounced deviations from a monoexponential decay behavior, which would generally be expected in the absence of the atom–atom interaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. J. Hecker Denschlag, J.E. Simsarian, H. Häffner, C. McKenzie, A. Browaeys, D. Cho, K. Helmerson, S.L. Rolston, W.D. Phillips, J. Phys. B 35, 3095 (2002)

    Article  ADS  Google Scholar 

  2. I. Bloch, J. Phys. B 38, S629 (2005)

    Article  ADS  Google Scholar 

  3. O. Morsch, M. Oberthaler, Rev. Mod. Phys. 78, 179 (2006)

    Article  ADS  Google Scholar 

  4. R. Folman, P. Krüger, D. Cassettari, B. Hessmo, T. Maier, J. Schmiedmayer, Phys. Rev. Lett. 84, 4749 (2000)

    Article  ADS  Google Scholar 

  5. R. Folman, P. Krüger, J. Denschlag, C. Henkel, J. Schmiedmayer, Adv. At. Mol. Opt. Phys. 48, 263 (2003)

    Google Scholar 

  6. B.P. Anderson, M.A. Kasevich, Science 282, 1686 (1998)

    Article  ADS  Google Scholar 

  7. O. Morsch, J.H. Müller, M. Cristiani, D. Ciampini, E. Arimondo, Phys. Rev. Lett. 87, 140402 (2001)

    Article  ADS  Google Scholar 

  8. H. Ott, J. Fortagh, G. Schlotterbeck, A. Grossmann, C. Zimmermann, Phys. Rev. Lett. 87, 230401 (2001)

    Article  ADS  Google Scholar 

  9. W. Hänsel, J. Reichel, P. Hommelhoff, T.W. Hänsch, Phys. Rev. Lett. 86, 608 (2001)

    Article  ADS  Google Scholar 

  10. T.L. Gustavson, A.P. Chikkatur, A.E. Leanhardt, A. Görlitz, S. Gupta, D.E. Pritchard, W. Ketterle, Phys. Rev. Lett. 88, 020401 (2002)

    Article  ADS  Google Scholar 

  11. M. Albiez, R. Gati, J. Fölling, S. Hunsmann, M. Cristiani, M.K. Oberthaler, Phys. Rev. Lett. 95, 010402 (2005)

    Article  ADS  Google Scholar 

  12. T. Schumm, S. Hofferberth, L.M. Andersson, S. Wildermuth, S. Groth, I. Bar-Joseph, J. Schmiedmayer, P. Krüger, Nature Phys. 1, 57 (2005)

    Article  ADS  Google Scholar 

  13. H. Friedrich, Theoretical Atomic Physics, 2nd edn. (Springer, Berlin, 1994)

  14. N. Moiseyev, L.D. Carr, B.A. Malomed, Y.B. Band, J. Phys. B 37, L193 (2004)

    Article  Google Scholar 

  15. D. Witthaut, S. Mossmann, H.J. Korsch, J. Phys. A 38, 1777 (2005)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  16. L.D. Carr, M.J. Holland, B.A. Malomed, J. Phys. B 38, 3217 (2005)

    Article  ADS  Google Scholar 

  17. N. Moiseyev, L.S. Cederbaum, Phys. Rev. A 72, 033605 (2005)

    Article  ADS  Google Scholar 

  18. P. Schlagheck, T. Paul, Phys. Rev. A 73, 023619 (2006)

    Article  ADS  Google Scholar 

  19. S. Wimberger, P. Schlagheck, R. Mannella, J. Phys. B 39, 729 (2006)

    Article  ADS  Google Scholar 

  20. E. Balslev, J.M. Combes, Commun. Math. Phys. 22, 280 (1971)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  21. B. Simon, Ann. Math. 97, 247 (1973)

    Article  Google Scholar 

  22. W.P. Reinhardt, Ann. Rev. Phys. Chem. 33, 223 (1982)

    Article  Google Scholar 

  23. N. Moiseyev, Phys. Rep. 302, 212 (1998)

    Article  ADS  Google Scholar 

  24. A. Smerzi, S. Fantoni, S. Giovanazzi, S.R. Shenoy, Phys. Rev. Lett. 79, 4950 (1997)

    Article  ADS  Google Scholar 

  25. C. Weiss, T. Jinasundera, Phys. Rev. A 72, 053626 (2005)

    Article  ADS  Google Scholar 

  26. C. Menotti, S. Stringari, Phys. Rev. A 66, 043610 (2002)

    Article  ADS  Google Scholar 

  27. M. Olshanii, Phys. Rev. Lett. 81, 938 (1998)

    Article  ADS  Google Scholar 

  28. A.J.F. Siegert, Phys. Rev. 56, 750 (1939)

    Article  ADS  Google Scholar 

  29. S. Wimberger, R. Mannella, O. Morsch, E. Arimondo, A. Kolovsky, A. Buchleitner, Phys. Rev. A 72, 063610 (2005)

    Article  ADS  Google Scholar 

  30. We neglect here the fact that there also exist ‘long-lived’ continuum states in the open system under consideration, the decay rates of which can be comparable to or smaller than that of the energetically lowest quasi-bound state. In practice, the unwanted convergence into such continuum states can be avoided by starting with an initial wavefunction that is rather close to the quasi-bound state to be calculated

  31. A. Buchleitner, B. Grémaud, D. Delande, J. Phys. B 27, 2663 (1994)

    Article  ADS  Google Scholar 

  32. The number of atoms in the well can be enhanced by choosing a weaker transverse confinement, e.g. ω=102 Hz, for which one would obtain N(0)≃1000 atoms. In that case, however, three-dimensional calculations ought to be performed in order to make reliable quantitative predictions for the decay process

  33. A. Günther, S. Kraft, M. Kemmler, D. Koelle, R. Kleiner, C. Zimmermann, J. Fortágh, Phys. Rev. Lett. 95, 170405 (2005)

    Article  Google Scholar 

  34. C.J. Pethick, H. Smith, Bose–Einstein Condensation in Dilute Gases (University Press, Cambridge, 2002)

    Google Scholar 

  35. T. Anker, M. Albiez, R. Gati, S. Hunsmann, B. Eiermann, A. Trombettoni, M.K. Oberthaler, Phys. Rev. Lett. 94, 020403 (2005)

    Article  ADS  Google Scholar 

  36. T. Paul, K. Richter, P. Schlagheck, Phys. Rev. Lett. 94, 020404 (2005)

    Article  ADS  Google Scholar 

  37. R. Gati, B. Hemmerling, J. Fölling, M. Albiez, M.K. Oberthaler, Phys. Rev. Lett. 96, 130404 (2006)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Schlagheck.

Additional information

PACS

03.75.Lm; 03.65.Xp; 03.75.Kk

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schlagheck, P., Wimberger, S. Nonexponential decay of Bose–Einstein condensates: a numerical study based on the complex scaling method. Appl. Phys. B 86, 385–390 (2007). https://doi.org/10.1007/s00340-006-2511-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-006-2511-8

Keywords

Navigation